JMP  Vol.4 No.5 , May 2013
Reverse Engineering Approach to Quantum Electrodynamics
Show more
Abstract: The S matrix of e-e scattering has the structure of a projection operator that projects incoming separable product states onto entangled two-electron states. In this projection operator the empirical value of the fine-structure constant α acts as a normalization factor. When the structure of the two-particle state space is known, a theoretical value of the normalization factor can be calculated. For an irreducible two-particle representation of the Poincaré group, the calculated normalization factor matches Wyler’s semi-empirical formula for the fine-structure constant α. The empirical value of α, therefore, provides experimental evidence that the state space of two interacting electrons belongs to an irreducible two-particle representation of the Poincaré group.
Cite this paper: W. Smilga, "Reverse Engineering Approach to Quantum Electrodynamics," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 561-571. doi: 10.4236/jmp.2013.45079.

[1]   W. Smilga, Journal of Physics: Conference Series, Vol. 343, 2012, Article ID: 012112. doi:10.1088/1742-6596/343/1/012112

[2]   R. Haag, Matematisk-Fysiske Meddelelser Udgivet af. Det Kongelige Danske Videnskabernes, Vol. 29, 1955, pp. 1-37.

[3]   N. D. Mermim, Physics Today, Vol. 57, 2004, pp. 10-12. doi:10.1063/1.1768652

[4]   E. Eilam, “Reversing: Secrets of Reverse Engineering,” John Wiley & Sons, Hoboken, 2005.

[5]   Wikipedia, “Reverse Engineering.”

[6]   R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 749-759. doi:10.1103/PhysRev.76.749

[7]   R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 769-789. doi:10.1103/PhysRev.76.769

[8]   R. P. Feynman, Physical Review, Vol. 80, 1950, pp. 440-457. doi:10.1103/PhysRev.80.440

[9]   W. Heisenberg, Zeitschrift für Physik, Vol. 120, 1943, pp. 513-538.

[10]   G. Scharf, “Finite Quantum Electrodynamics,” Springer, Berlin, Heidelberg, New York, 1989. doi:10.1007/978-3-662-01187-4

[11]   A. Wyler, Comptes rendus de l’Académie des Sciences, Vol. 271A, 1971, pp. 186-188.

[12]   R. Gilmore, “From a Visit to Armand Wyler in Zürich.”

[13]   B. Robertson, Physical Review Letters, Vol. 27, 1971, pp. 1545-1547. doi:10.1103/PhysRevLett.27.1545

[14]   D. J. Gross, Physics Today, Vol. 42, 1989, pp. 9-11. doi:10.1063/1.2811237

[15]   E. B. Vinberg, “Homogeneous Bounded Domain,” Encyclopedia of Mathematics, Springer.

[16]   L. K. Hua, “Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,” Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, 1963.

[17]   Link to animation of Mobius transformation:

[18]   I. S. Sharadze, “Sphere,” Encyclopedia of Mathematics, Springer.

[19]   D. Hanneke, S. Fogwell and G. Gabrielse, Physical Review Letters, Vol. 100, 2008, Article ID: 120801. doi:10.1103/PhysRevLett.100.120801

[20]   H. Joos, Fortschritte der Physik, Vol. 10, 1962, pp. 65-146. doi:10.1002/prop.2180100302

[21]   S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 36-53.

[22]   S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 272-280.

[23]   R. L. Jaffe, Physical Review, Vol. D72, 2005, Article ID: 021301.

[24]   R. Gilmore, Physical Review Letters, Vol. 28, 1972, pp. 462-464. doi:10.1103/PhysRevLett.28.462

[25]   W. Smilga, “Lokale Eigenschaften von Vielteilchensystemen in einer de Sitter-Invarianten Quantenmechanik,” Dissertation, Eberhard-Karl-Universitat, Tübingen, 1972.