Back
 JEP  Vol.4 No.5 , May 2013
Phenol Removal from Water with Potassium Permanganate Modified Granular Activated Carbon
Abstract: In order to improve adsorption capacity of granular activated carbon (GAC), potassium permanganate was used to react with GAC to change the surface properties and improve the adsorption capacity of GAC. By batch experiments, improvement of adsorption capacity of potassium permanganate modified GAC (GACM) was studied. The influence of adsorption time, temperature, ratio of phenol with GAC/GACM, initial concentration of phenol and pH on adsorption efficiency of GACM was studied. The results showed that modified by potassium permanganate, the adsorption capacity of GAC improved to a higher level. The removal efficiency of phenol increased to about 20%.
Cite this paper: J. Zhang, "Phenol Removal from Water with Potassium Permanganate Modified Granular Activated Carbon," Journal of Environmental Protection, Vol. 4 No. 5, 2013, pp. 411-417. doi: 10.4236/jep.2013.45049.
References

[1]   T. Yamamoto, S. I. Kim, J. Chaichanawong, E. Apiluck and T. Ohmori, “Removal of Aqueous Organic Pollutants by Adsorption-Catalytic Process Using Mesoporous Carbon Beads Loaded with Metal Oxides,” Applied Catalysis B: Environmental, Vol. 88, No. 3-4, 2009, pp. 455-461. doi:10.1016/j.apcatb.2008.10.011

[2]   A. Jasper, H. H. Salih, G. A. Sorial, R. Sinha, R. Krishnan and C. L. Patterson, “Impact of Nanoparticles and Natural Organic Matter on the Removal of Organic Pollutants by Activated Carbon Adsorption,” Environmental Engineering Science, Vol. 27, No. 1, 2010, pp. 85-93. doi:10.1089/ees.2009.0234

[3]   G. A. Sorial, M. T. Suidan, R. D. Vidic and R. C. Brenner, “Effect of GAC Characteristics on Adsorption of Organic Pollutants,” Water Environment Research, Vol. 65, No.1, 1993, pp. 53-57. doi:10.2175/WER.65.1.7

[4]   J. Jaramillo, P. M. álvarez and V. G. Serrano, “Oxidation of Activated Carbon by Dry and Wet Methods Surface Chemistry and Textural Modifications,” Fuel Processing Technology, Vol. 91, No. 11, 2010, pp. 1768-1775. doi:10.1016/j.fuproc.2010.07.018

[5]   H. Oda, A. Yamashita, S. Minoura, M. Okamoto and T. Morimoto, “Modification of the Oxygen-Containing Functional Group on Activated Carbon Fiber in Electrodes of an Electric Double-Layer Capacitor,” Journal of Power Sources, Vol. 158, No. 2, 2006, pp. 1510-1516. doi:10.1016/j.jpowsour.2005.10.061

[6]   M. G. Alves, M. M. Sabio and F. R. Reinoso, “Modification of Activated Carbon Hydrophobicity by Pyrolysis of Propene,” Journal of Analytical and Applied Pyrolysis, Vol. 89, No. 1, 2010, pp. 17-21. doi:10.1016/j.jaap.2010.04.009

[7]   C. J. Liu, X. Y. Liang, X. J. Liu, Q. Wang, N. Teng, L. Zhan, R. Zhang, W. M. Qiao and L. C. Ling, “Wettability Modification of Pitch-Based Spherical Activated Carbon by Air Oxidation and Its Effects on Phenol Adsorption,” Applied Surface Science, Vol. 254, No. 9, 2008, pp. 2659-2665. doi:10.1016/j.apsusc.2007.10.026

[8]   J. Aguado, J. M. Escola and M. C. Castro, “Influence of the Thermal Treatment upon the Textural Properties of Sol-Gel Mesoporous γ-Alumina Synthesized with Cationic Surfactants,” Microporous Mesoporous Mater, Vol. 128, No. 1-3, 2010, pp. 48-55. doi:10.1016/j.micromeso.2009.08.002

[9]   J. S. Im, M. J. Jung and Y. S. Lee, “Effects of Fluorination Modification on Pore Size Controlled Electrospun Activated Carbon Fibers for High Capacity Methane Storage,” Journal of Colloid and Interface Science, Vol. 339, No. 1, 2009, pp. 31-35. doi:10.1016/j.jcis.2009.07.013

[10]   Y. W. Lee, J. W. Park, S. J. Jun, D. K. Choi and J. E. Yie, “NOx Adsorption—Temperature Programmed Desorption and Surface Molecular Ions Distribution by Activated Carbon with Chemical Modification,” Carbon, Vol. 42, No. 1, 2004, pp. 59-69. doi:10.1016/j.carbon.2003.09.019

[11]   S. B. Lyubchik, R. Benoit and F. Beguin, “Influence of Chemical Modification of Anthracite on the Porosity of the Resulting Activated Carbons,” Carbon, Vol. 40, No. 8, 2002, pp. 1287-1294. doi:10.1016/S0008-6223(01)00288-3

[12]   R. Berenguer, J. P. M. Lozar, C. Quijada, D. C. Amoros and E. Morallon, “Effect of Electrochemical Treatments on the Surface Chemistry of Activated Carbon,” Carbon, Vol. 47, No. 4, 2009, pp. 1018-1027. doi:10.1016/j.carbon.2008.12.022

[13]   B. P. Bakhmatyuk, B. Y. Venhryn, I. I. Grygorchak and M. M. Micov, “Influence of Chemical Modification of Activated Carbon Surface on Characteristics of Supercapacitors,” Journal of Power Sources, Vol. 180, No. 2, 2008, pp. 890-895. doi:10.1016/j.jpowsour.2008.02.045

[14]   D. Q. Mo and D. Q. Ye, “Surface Study of Composite Photocatalyst Based on Plasma Modified Activated Carbon Fibers with TiO2,” Surface & Coatings Technology, Vol. 203, No. 9, 2009, pp. 1154-1160. doi:10.1016/j.surfcoat.2008.10.007

[15]   B. Z. Li, Z. P. Lei, X. H. Zhang and Z. G. Huang, “Adsorption of Simple Aromatics from Aqueous Solutions on Modified Activated Carbon Fibers,” Catalysis Today, Vol. 158, No. 3, 2010, pp. 515-520. doi:10.1016/j.cattod.2010.08.014

[16]   Q. S. Liu, T. Zheng, N. Li, P. Wang and A. Gulizhaer, “Modification of Bamboo-Based Activated Carbon Using Microwave Radiation and Its Effects on the Adsorption of Methylene Blue,” Applied Surface Science, Vol. 256, No. 10, 2010, pp. 3309-3315. doi:10.1016/j.apsusc.2009.12.025

[17]   M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee and Y. S. Lee, “Physico-Chemical Surface Modification of activated Carbon by Oxyfluorination and Its Electrochemical Characterization,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 389, No. 1, 2011, pp. 274-280. doi:10.1016/j.colsurfa.2011.08.013

[18]   J. R. Utrilla, M. S. Polo, V. G. Serrano, P. M. Alvarez, M. C. M. A. Ferraz and J. M. Dias, “Activated Carbon Modifications to Enhance Its Water Treatment Applications. An Overview,” Journal of Hazardous Materials, Vol. 187, No. 1, 2011, pp. 1-23. doi:10.1016/j.jhazmat.2011.01.033

[19]   D. A. Kunkel, E. T. Gall, J. A. Siegel, A. Novoselac, G. C. Morrison and R. L. Corsi, “Passive Reduction of human Exposure to Indoor Ozone,” Building and Environment, Vol. 45, No. 2, 2010, pp. 445-452. doi:10.1016/j.buildenv.2009.06.024

[20]   F. Cataldo, “Ozone Reaction with Carbon Nanostructures 2: The Reaction of Ozone with Milled Graphite and Different Carbon Black Grades,” Journal of Nanoscience and Nanotechnology, Vol. 7, No. 4-5, 2007, pp. 1446-1454. doi:10.1166/jnn.2007.327

[21]   G. P. Khokhlova and S. A. Semenova, “Ozonation of Fibrous Carbon Materials and the Effect of Molybdenum Compounds on This Process,” Solid Fuel Chemistry, Vol. 42, No. 1, 2008, pp. 54-59.

[22]   J. Jaramillo, V. G. Serrano and P. M. Alvarez, “Enhanced Adsorption of Metal Ions onto Functionalized Granular ACs Prepared from Cherry Stones,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 670-676. doi:10.1016/j.jhazmat.2008.04.009

[23]   G. G. Stavropoulos, P. Samaras and G. P. Sakellaropoulos, “Effects of Activated Carbon Modification on Porosity, Surface Structure and Phenol Adsorption,” Journal of Hazardous Materials, Vol. 151, No. 2-3, 2008, pp. 414-421. doi:10.1016/j.jhazmat.2007.06.005

[24]   J. Jaramilloa, P. M. A. Lvareza and V. G. M. Serrano, “Preparation and Ozone-Surface Modification of Activated Carbon. Thermal Stability of Oxygen Surface Groups,” Applied Surface Science, Vol. 256, No. 17, 2010, pp. 5232-5236. doi:10.1016/j.apsusc.2009.12.109

[25]   M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand and A. A. Niya, “Ammonia Modification of Activated Carbon to Enhance Carbon Dioxide Adsorption: Effect of Pre-Oxidation,” Applied Surface Science, Vol. 257, No. 9, 2011, pp. 3936-3942. doi:10.1016/j.apsusc.2010.11.127

[26]   X. Song, H. Liu, L. Cheng and Y. Qu, “Surface Modification of Coconut-Based Activated Carbon by Liquid-Phase Oxidation and Its Effects on Lead Ion Adsorption,” Desalination, Vol. 255, No. 1, 2010, pp. 78-83. doi:10.1016/j.desal.2010.01.011

[27]   Z. X. Wu, P. A. Webley and D. Y. Zhao, “Comprehensive Study of Pore Evolution, Mesostructural Stability, and Simultaneous Surface Functionalization of Ordered Mesoporous Carbon (FDU-15) by Wet Oxidation as a Promising Adsorbent,” Langnuir, Vol. 26, No. 12, 2010, pp. 10277-10286. doi:10.1021/la100455w

[28]   A. Gil, G. L. Puenti and P. Grange, “Evidence of Textural Modifications of an Activated Carbon on Liquidphase Oxidation-Treatments,” Microporous Materials, Vol. 12, No. 1-3, 1997, pp. 51-61. doi:10.1016/S0927-6513(97)00057-6

[29]   C. Y. Yin, M. K. Aroua and W. M. A. W. Daud, “Riview of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions,” Separation and Purification Technology, Vol. 52, No. 3, 2007, pp. 403-415. doi:10.1016/j.seppur.2006.06.009

[30]   R. B. Mathur, J. Mittal, O. P. Bahl and N. K. Sandle, “Characteristics of KMnO4-Modified PAN Fibres—Its Influence on the Resulting Carbon Fibres’ Properties,” Carbon, Vol. 32, No. 1, 1994, pp. 71-77. doi:10.1016/0008-6223(94)90010-8

[31]   S. Sabrina and G. Francesca, “Conventional Oxidation Treatments for the Removal of Arsenic with Chlorine Dioxide, Hypochlorite, Potassium Permanganate and Mono-chloramine,” Water Research, Vol. 44, No. 19, 2010, pp. 5653-5659. doi:10.1016/j.watres.2010.06.032

[32]   S. Wilkinson, “Aquaculture Fundamentals: The Use of Lime, Gypsum, Alum and Potassium Permanganate in Water Quality Management,” Aquaculture Asia, Vol. 7, No. 2, 2002, pp. 12-13.

[33]   L. H. Hu, A. M. Stemig, K. H. Wammer and T. J. Strathmann, “Oxidation of Antibiotics during Water Treatment with Potassium Permanganate: Reaction Pathways and Deactivation,” Environmental Science and Technology, Vol. 45, No. 8, 2011, pp. 3635-3642. doi:10.1021/es104234m

[34]   L. H. Hu, H. M. Martin and T. J. Strathmann, “Oxidation Kinetics of Antibiotics during Water Treatment with Potassium Permanganate,” Environmental Science and Technology, Vol. 44, No. 16, 2010, pp. 6416-6422. doi:10.1021/es101331j

[35]   G. T. Li and Y. M. Ying, “Treatment of Pharmaceutical Wastewater by Potassium Permanganate,” Advanced Materials Research, Vol. 219-220, 2011, pp. 36-39. doi:10.4028/www.scientific.net/AMR.219-220.36

 
 
Top