MRI  Vol.2 No.2 , May 2013
Lead induced overactivation of phagocytes and variation in enzymatic and non-enzymatic antioxidant defenses in intestinal macrophages of Channa punctatus

The aim of this study is to assess the adverse effects of lead, a well-documented non-essential element that occurs naturally in the environment, on Channa punctatus, in relation with ROS production and oxidative stress. Fishes were sampled, acclimatized and kept treated or untreated with lead (9.43 mg/L) under observation for 4 days. At day 4, respiratory burst activity, lipid peroxidation activity and superoxide dismutase level increased significantly in treated group as compared to the control. On the contrary, catalase, glutathione S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione activity decreased on treatment with lead. These results suggest that heavy metal like lead induces oxidative stress, influences the antioxidant defense system and may lead to physiological disorders rendering the health and survival of exposed fish to a compromised state.

Cite this paper
Paul, N. and Sengupta, M. (2013) Lead induced overactivation of phagocytes and variation in enzymatic and non-enzymatic antioxidant defenses in intestinal macrophages of Channa punctatus. Modern Research in Inflammation, 2, 28-35. doi: 10.4236/mri.2013.22004.
[1]   MacFarlane, G.B. and Burchettt, M.D. (2000) Cellular distribution of Cu, Pb, and Zn in the Grey Mangrove Avicemnia marina (Forsk.). Vierh Aquatic Botanica, 68, 45-59. doi:10.1016/S0304-3770(00)00105-4

[2]   Duruibe, J.O., Ogwuegbu, M.O.C. and Egwurugwu, J.N. (2007) Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112-118.

[3]   Guity, P., Mccabe, M.J., Pitts, D.K., Santini, R.P. and Pounds, J.G. (2002) Protein kinase C does not mediate the inhibitory action of lead on vitamin D3-dependent production of osteocalcin in osteoblastic bone cells. Toxicology and Applied Pharmacology, 178, 109-116. doi:10.1006/taap.1999.8819

[4]   Saleh, A.M., Vijayasarathy, C., Masoud, L., Kumar, L., Shahin, A. and Kambal, A. (2003) Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways. Toxicology and Applied Pharmacology, 90, 47-57. doi:10.1016/S0041-008X(03)00126-1

[5]   van der Oost, R., Beyer, J. and Vermeulen, N.P.E. (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13, 57-149. doi:10.1016/S1382-6689(02)00126-6

[6]   Nriagu, J.O. (1988) A silent epidemic of environmental metal poisoning. Environmental Pollution, 50, 139-161. doi:10.1016/0269-7491(88)90189-3

[7]   Goyer, R.A. (1993) Lead toxicity: Current concerns. Environmental Health Perspectives, 100, 177-187. doi:10.1289/ehp.93100177

[8]   Pirkle, J.L., Brody, D.J., Gunter, E.W., Kramer, R.A., Paschal, D.C. and Flegal, K.M. (1994) The decline in blood lead levels in the United States. Journal of American Medical Association, 272, 284-291. doi:10.1001/jama.1994.03520040046039

[9]   Bernard, A.M., Vyskocil, A., Kriz, J., Kodl, M. and Lauwerys, R. (1995) Renal effects of children living in the vicinity of a lead smelter. Environmental Research, 68, 91-95. doi:10.1006/enrs.1995.1012

[10]   USPHS (1997) Toxicological profile for lead [on CD-ROM]. Agency for Toxic Substances and Disease Registry, US Public Health Service.

[11]   Krocova, Z., Macela, A., Kroca, M. and Hernychova, L. (2000) The immunomodulatory effect(s) of lead and cadmium on the cells immune system in vitro. Toxicology in Vitro, 14, 33-40. doi:10.1016/S0887-2333(99)00089-2

[12]   Razmiafshari, M., Kao, J., d’Avignon, A. and Zawia, N.H. (2001) NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: Toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicology and Applied Pharmacology, 172, 1-10. doi:10.1006/taap.2001.9132

[13]   Collares-Buzato, C.B., Sueur, L.P.L. and Cruz-Hofling, M.A. (2002) Impairment of the cell-to-matrix adhesion and cytotoxicity induced by Bothtops moojeni snake venom in cultured renal tubular epithelia. Toxicology and Applied Pharmacology, 18, 124-132. doi:10.1006/taap.2002.9404

[14]   Prozialeck, W.C., Grunwald, G.B., Dey, P.M., Reuhl, K.R. and Parrish, A.R. (2002) Cadherins and NCAM as potential targets in metal toxicity. Toxicology and Applied Pharmacology, 182, 255-265. doi:10.1006/taap.2002.9422

[15]   Zheng, W., Aschmer, M. and Ghersi-Egea, J.M. (2003) Brain barrier systems: A new frontier in metal neurotoxincological research. Toxicology and Applied Pharmacology, 192, 1-11. doi:10.1016/S0041-008X(03)00251-5

[16]   Hinton, D.E., Lantz, R.C., Hampton, J.A., McCuskey, P.R. and McCuskey, R.S. (1987) Normal versus abnormal structure: Considerations in morphologic responses of teleosts to pollutants. Environmental Health Perspectives, 71, 139-146. doi:10.1289/ehp.8771139

[17]   Hinton, D.E., Baumann, P.C., Gardner, G.R., Hawkins, W.E., Hendricks, J.D., Murchelano, R.A. and Okihiro, M.S. (1992) Histopathologic biomarkers. In: Huggett, R., Kimerle, R.A., Meherle, P.M. and Bergman, H.L. Eds., Biomarkers—Biochemical, Physiological and Histological Markers of Anthropogenic Stress. A Special Publication of SETAC Lewis Publishers Boca Raton, Ann Arbor, London and Tokyo, 155-212.

[18]   Hinton, D.E. (1993) Toxicology-histopathology of fishes: A systematic approach and overview. In: Couch, J.A. and Fournie, J.W., Eds., Pathobiology of marine and estuarine organisms, CRC Press, Boca Raton, 177-215.

[19]   Hinton, D.E. (1994) Cells, cellular responses, and their markers in chronic toxicity of fishes. In: Malins, D.C. and Ostrander, G.K., Eds., Aquatic Toxicology. Molecular, Bio-Chemical and Cellular Perspectives, Lewis Publishers, Boca Raton, 207-239.

[20]   Whitfield, A.K. and Elliott, M. (2002) Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future. Journal of Fish Biology, 61, 220-250. doi:10.1111/j.1095-8649.2002.tb01773.x

[21]   Wendelaar Bonga, S.E. (1997) The stress response of fish. Physiological Reviews, 77, 591-626.

[22]   Basa, S.P. and Rani, U.A. (2003) Cadmium induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 56, 218-221. doi:10.1016/S0147-6513(03)00028-9

[23]   Atli, G., Alptekin, O., Tükel, S. and Canli, M. (2006) Response of catalase activity to Ag, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, C143, 218-224.

[24]   Atli, G. and Canli, M. (2008) Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25, 33-38. doi:10.1016/j.etap.2007.08.007

[25]   Nagalakshmi, N. (1998) Copper-induced oxidative stress in Scenedesmus bijugatus: Protective role of free radical scavengers. Bulletin of Environment Contamination and Toxicology, 61, 623-628. doi:10.1007/s001289900806

[26]   Tripathi, B.N. and Gaur, J.P. (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta Medica, 219, 397-404.

[27]   Dewez, D., Geoffroy, L., Vernet, G. and Popovic, R. (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fluid oxonilin alga Scenedesmus obliquus. Aquatic Toxicology, 74, 150-159. doi:10.1016/j.aquatox.2005.05.007

[28]   Cao, L., Huang, W., Liu, J., Yin, X. and Dou, S. (2010) Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comparative Biochemistry and Physiology, C151, 386-392.

[29]   Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D. and Colepicolo, P. (2003) Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008-1018. doi:10.1111/j.0022-3646.2003.02-193.x

[30]   Tripathi, B.N., Mehta, S.K., Amar, A. and Gaur, J.P. (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2. Chemosphere, 62, 538-544. doi:10.1016/j.chemosphere.2005.06.031

[31]   Devi, R. and Bannerjee, T.K. (2007) Toxicopathological impact of sub-lethal concentration of lead nitrate on the aerial respiratory organs of “murrel” Channa striata (Bloch, Pisces). Iranian Journal of Environmental Health Science and Engineering, 4, 249-256.

[32]   Secombes, C.J. (1990) Isolation of salmoid macrophages and analysis of their killing activity. Techniques in Fish Immunology, 1, 137-155.

[33]   Claiborne, A. (1985) Catalase activity. In: Greenwald, R.A., Ed., CRC Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, 283-284.

[34]   Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469-474. doi:10.1111/j.1432-1033.1974.tb03714.x

[35]   Utley, H.C., Bernheim, F. and Hachslein, P. (1967) Effect of sulfhydryl reagent on peroxidation in microsome. Archives of Biochemistry and Biophysics, 260, 521-531.

[36]   Fujiki, K. and Yano, T. (1997) Effect of sodium alginate on the non-specific defense system of the common carp. Fish and Shellfish Immunology, 7, 417-427. doi:10.1006/fsim.1997.0095

[37]   Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.

[38]   Ellman, G.L. (1959) Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. doi:10.1016/0003-9861(59)90090-6

[39]   Hermes, L.M. (2004) Oxygen in biology and biochemistry. In: Storey, K.B., Ed., Functional Metabolism: Regulation and adaptation, Wiley-Liss, Inc., New York, 319-368.

[40]   Varanka, Z., Rojik, I., Nemcsok, J. and ábraham, M. (2001) Biochemical and morphological changes in carp liver following exposure to copper sulfate and tannic acid. Comparative Biochemistry and Physiology C, 128, 467-478.

[41]   Winston, G.W. and DiGiulio, R.T. (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19, 137-161. doi:10.1016/0166-445X(91)90033-6

[42]   Lopez-Torrez, M., Perez-Campos, R., Cadenas, S., Rojas, C. and Barja, G. (1993) A comparative study of free radicals in vertebrates-II. Non-enzymatic antioxidants and oxidative stress. Comparative Biochemistry and Physiology, 105, 757-763.

[43]   Ahmad, I., Hamid, T., Fatima, M., Chand, H.S., Jain, S.K., Athar, M. and Raisuddin, S. (2000) Induction of hepatic antioxidants in freshwater fish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta, 1523, 37-48. doi:10.1016/S0304-4165(00)00098-2

[44]   Scandalios, J.G. (2005) Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defences. Brazilian Journal of Medical and Biological Research, 38, 995-1014. doi:10.1590/S0100-879X2005000700003

[45]   Dimitrova, M.S.T., Tsinova, V. and Velcheva, V. (1994) Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comarative Biochemistry and Physiology Part C, 108, 43-46.

[46]   Palace, V.P., Mjewski, H.S. and Klaverkamp, J.F. (1992) Interactions among antioxidant defenses in liver of rainbow trout (Oncorhyncus mykiss) exposed to cadmium. Canadian Journal of Fish and Aquatic Science, 50, 156-162. doi:10.1139/f93-018

[47]   Kono, Y. and Fridovich, I. (1982) Superoxide radical inhibits catalase. Journal of Biological Chemistry, 257, 5751-5754.

[48]   Forman, H.J. and Torres, M. (2002) Reactive oxygen species and cell signaling. American Journal of Respiratory and Critical Care Medicine, 166, 24-28. doi:10.1164/rccm.2206007

[49]   DeLeo, F.R. and Quinn, M.T. (1996) Assembly of the phagocyte NADPH oxidase: Molecular interaction of oxidase proteins. Journal of Leukocyte Biology, 60, 677-691.

[50]   Babior, B.M. (1999) NADPH oxidase: An update. Blood, 93, 1464-1476.

[51]   El Benna, J., Dang, P.M., Gaudry, M., Fay, M., Morel, F., Hakim, J. and Gougerot-Pocidalo, M.A. (1997) Phosphorylation of the respiratory burst oxidase subunit p67 during human neutrophil activation: Regulation by protein kinase C-dependent and independent pathways. Journal of Biological Chemistry, 272, 17204-17208. doi:10.1074/jbc.272.27.17204

[52]   Baggiolini, M. (1984) Phagocytes use oxygen to kill bacteria. Experientia, 40, 906-909. doi:10.1007/BF01946438

[53]   Secombes, C.J. and Fletcher, T.C. (1992) The role of phagocytes in the protective mechanisms of fish. Annual Review of Fish Diseases, 2, 51-71. doi:10.1016/0959-8030(92)90056-4

[54]   Pandey, S., Parvez, S., Ansari, R.A., Ali, M., Kaur, M., Hayat, F., Ahmad, F. and Raisuddin, S. (2008) Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions, 174, 183-192. doi:10.1016/j.cbi.2008.05.014

[55]   Jastrz?bska, E.B. (2010) The effect of aquatic cadmium and lead pollution on lipid peroxidation and superoxide dismutase activity in freshwater fish. Polish Journal of Environmental Studies, 19, 1139-1150.

[56]   Rome′o, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. and Girard, J.P. (2000) Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185-194. doi:10.1016/S0166-445X(99)00039-9

[57]   Lackner, R. (1998) Oxidative stress in fish by environmental pollutants. In: Braunbeck, T., Hinton, D.E. and Streit, B., Eds., Fish Ecotoxicology, Birkhause Verlag, Basel, 203-224. doi:10.1007/978-3-0348-8853-0_6

[58]   Ahmad, I., Pacheco, M. and Santos, M.A. (2004) Enzymatic and nonenzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicology and Environmental Safety, 57, 290-302. doi:10.1016/S0147-6513(03)00080-0

[59]   Ahmad, I., Oliveira, M., Pacheco, M. and Santos, M.A. (2005) Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without β-naphthoflavone pre-exposure. Chemosphere, 61, 267-275. doi:10.1016/j.chemosphere.2005.01.069

[60]   Santos, M.A., Pacheco, M. and Ahmad, I. (2004) Anguilla anguilla L. antioxidants responses to in situ bleached kraft pulp mill effluent outlet exposure. Environment International, 30, 301-308. doi:10.1016/S0160-4120(03)00178-8

[61]   Elferink, J.G.R. (1987) Mode of activation of the metabolic burst in polymorphonuclear leukocytes by calcium oxalate crystals. Agents Actions, 22, 295-301. doi:10.1007/BF02009059

[62]   Stegeman, J.J., Brouwer, M., Digiulio, R.T., Forlin, L., Fowler, B.A., Sanders, B.M. and Vanveld, P.A. (1992) Molecular responses to environmental contamination— enzyme and protein systems as indicators of chemical-exposure and effect. In: Huggett, R.J., Kimerle, R.A., Mehrle, P.M. and Bergman, H.L., Eds., Biomarkers Biochemical, Physiological, and Histological Markers of Anthropogenic Stress, Lewis Publishers, Inc., Boca Raton, 235-335.

[63]   Viarengo,A. and Nott, J.A. (1993) Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology, 104C, 355-372.

[64]   Paskerová, H., Hilscherová, K. and Bláha, L. (2012) Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass. Environment and Science Pollution Research, 19, 2024-2037. doi:10.1007/s11356-012-0960-7

[65]   Sreejai, R. and Jaya, D.S. (2010) Studies on the changes in lipid peroxidation and antioxidants in fishes exposed to hydrogen sulfide. Toxicology International, 17, 71-77. doi:10.4103/0971-6580.72674

[66]   Sandhir, R., Julka, D. and Gill, K.D. (1994) Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacology and Toxicology, 74, 66-71. doi:10.1111/j.1600-0773.1994.tb01077.x

[67]   Yousuf, M. H. A. and El-Shahawi, A. (1999) Trace metals in lethrinus lentjan fish from Arabian gulf: Metal accumulation in kidney and heart tissues. Bulletin of Environmental Contamination and Toxicology, 62, 293-300. doi:10.1007/s001289900873

[68]   Vinodhini, R. and Narayanan, M. (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science and Technology, 5, 179-182.