[1] Badillo, V. (1971) Monographia de la familia Caricaceae. Maracay, Venezuela.
[2] Manshardt, R.M. (1992) Papaya. In: Biotechnology of Perennial Fruit Crops, F. A. Hammerschlag and R. E. Litz, Eds., Cambridge University Press, Oxford, 489-511.
[3] Heinrichs, J., Lindner, M., Groth, H., Hentschel, J., Feldberg, K., Renker, C., Engel, J.J., von Konrat, M., Long, D.G. and Schneider, H. (2006) Goodbye or welcome Gondwana? Insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematic and Evolution, 258, 227-250.
[4] Feldberg, K., Hentschel, J. and Wilson, R. (2007) Phylogenetic biogeography of the leafy liverwort Herbertus based on nuclear and chloroplast DNA sequence data: Correlation between genetic variation and geo-graphical distribution. Journal of Biogeography, 34, 688-698.
[5] Leon, H. and Alain, H. (1953) Familia Caricaceae. In: Flora de Cuba, Ed., Museo de Historia Natural del Colegio de La sale, La Habana, 352-354.
[6] Solms, L. and Grafen, H. (1889) Die heimath un der ursprung des culti-virten melonebaumes, Carica papaya L. Botanische Zeitung, 49, 791-798.
[7] Sing, I. and Sirohi, S.C. (1977) Sex expression studies in papaya. Plant Journal Research, 2, 150-152.
[8] Reddy, G.M. (2006) Seedling leaf morphology in identification of sex types and confirmation through RAPD markers in Carica papaya L. Journal of Genetic and Breeding, 60, 1-10.
[9] Oviedo, R. and Ventosa, I. (2006) Fichas del Herbario Nacional de Cuba. Academia Nacional de Ciencias de Cuba.
[10] Martínez-Gómez, P., Majourhat, K., Zeinalabedini, M., Erogul, D., Khayam-Nekoui, M., Hafidi, A., Piqueras, A. and Gradziel, T.M. (2007) Use of biotechnology for preserving rare fruit germplasm. Bioremediation, Biodiversity and Bio-availability, 1, 31-40.
[11] Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatel-lite) markers for germplasm analysis. Molecular Breeding, 2, 225-238.
[12] Welsh, J. and McClelland, M. (1990) Finger printing genomes using PCR with arbitraries primers. Nucleic Acid Research, 18, 7213-7218.
[13] Messaoud, C., Afif, M., Boulila, A., Rejeb, M.N. and Boussaid, M. (2007) Genetic variation of Tunisian Myrtus communis L. (Myrtaceae) populations assessed by isozymes and RAPDs. Annals of Forest Science, 63, 845-853.
[14] Sharon, D., Hillel, J., Vainstein, A. and Lavi, U. (1992) Application of DNA finger-printings for identification and genetic analysis of Carica pa-paya and other Carica species. Euphytica, 62, 119-126.
[15] Stiles, J.I., Lemine, C., Sondur, S., Morshidi, M.B. and Manshardt, M. (1993) Randomly amplified poly-morphic DNA for evaluating genetic relationships among pa-paya cultivars. Theoretical and Applied Genetics, 85, 697-701.
[16] Vitoria, A.P., de Souza, G.A., Bressan-Smith, R.E., Pinto, F.D., Pascal, B., Guimaraes, P.S., Daben, R.F. and Gonzaga, M. (2004) DNA fingerprint of Carica papaya L. genotypes by RAPD markers. Journal of New Seed, 6, 51-65.
[17] Saxena, S., Chandra, R., Srivastava, A.P., Mishra, M. and Ranade, S.A. (2005) Analysis of genetic diversity among papaya cultivars using single primer amplification reac-tion (SPAR). Journal of Horticultural Science & Biotechnology, 80, 291-296.
[18] da Silva, F.F., Pereira, G.M., Campos, W., Damasceo- Junior, P.C., Santana-Pereira, T.M., Cancela-Ramos, H.G., Pio-Viana, A. and Ferregeti, G.A. (2007a) Monitoring of the genetic variability in papaya parent “Formosa” of “UENF/CALIMAN 01” hybrid via RAPD. Crop Breed- ing and Applied Biotechnology, 7, 36-42.
[19] Jobin-Décor, M.P., Graham, G.C., Henry, R.J. and Drew, R.A. (1997) RAPD and isozyme analysis of relationships between Carica papaya and wild species. Genetic Resources and Crop Evolution, 44, 471-477.
[20] Magdalita, P.M., Drew, R.A., Adkins, S.W and Godwin, I.D. (1997) Morphological, molecular and cytological analysis of Carica papaya L. and C. cauliflora interspecific hybrids. Theoretical and Applied Genetics, 95, 224-229.
[21] Parasmis, A.S., Gupta, V.S., Tambankar, S.A. and Ranjekar, P.K. (2000) A highly reliable sex diagnosis PCR assay for mass screaning of papaya seedlings. Molecular Breeding, 6, 337-344.
[22] Lemos, E.G.M., Silva, C.L. and Zcaidad, H.A. (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphytica, 127, 179-184.
[23] Urasaki, N., Tokumoto, M., Tanora, K., Kayano, T., Tamaka, H., Oku, H. and Terauchi, P. (2002) A male and hermaphrodite specific RAPD markers for papaya. Theoretical and Applied Genetics, 104, 281-285.
[24] da Silva, F.F., Pereira, G.M., Ferrerira-Campos, W., Damasceo-Junior, P.C., Santana-Pereira, T.M., Souza- Filho, G.A., Cancela-Ramos, H.G., Pio-Viana, A. and Ferregeti, G.A. (2007b) DNA marker-assisted sex conver-sion in elite papaya genotype (Carica papaya L.). Crop Breeding and Applied Biotechnology, 7, 52-58.
[25] Niroshini, E., Everard, J.M., Karunahayane, E.M. and Tirimanne, M.C.S. (2008) Detection of sequence characterized amplified region (SCAR) markers linked to sex expression in Carica papaya L. Journal of National Science Foundation of Sri Lanka, 36, 145-150.
[26] Sondur, S.N., Manshard, R.M. and Stiles, J.I. (1996) A genetic linkage map of papaya based on RAPD markers. Theoretical and Applied Genetics, 93, 542-553.
[27] Narvel, J.M., Chu, W.C., Fehr, W.R., Cregan, P.B. and Shoemaker, R.C. (2000) Development of multiplex sets of simple sequence repeat DNA markers covering the soybean genome. Molecular Breeding, 6, 175-183.
[28] Sánchez-Pérez, R., Dicenta, F. and Martínez-Gómez, P. (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica, 138, 263-269.
[29] Hayden, M.J., Nguyen, T.M., Waterman, A. and Chal- mers, K.J. (2008) Multiplex-ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC genomics, 9, 80
[30] Doyle, J.J. and Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemestry Bulletin, 19, 11-15.
[31] Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
[32] Nei, M. and Li, W.H. (1979) Mathematical model for studying genetic variation in terms of restriction. Proceedings of the National Academy of Science of USA, 76, 5269-5273.
[33] Dax, E., Livneh, O., Edelbaum, O., Kedar, N., Gavish, N., Karchi, H., Milo, J., Sela, I. and Rabinowit, H.D. (1993) A random amplified polymorphic DNA (RAPD) molecular marker for the Tm-2agene in tomato. Euphytica, 1-2, 159-163.
[34] Gérard, P.R., Fernández-Manjarrés, J.F., Bertolino, P., Dufour, J., Raquin, C. and Frascaria-Lacostem, F. (2006) New insights in the recognition of the European ash species Fraxinus excelsior and Fraxinus augustifolia as useful tools for forest management. Annals of Forest Science, 63, 733-738.
[35] Yamada, M.M., Faleiro, F.G., Lopes, U.V., Bahia, R.C., Pires, J.L., Gomes, L.M.C. and Melo, G.R.P. (2001) Genetic variability in cultivated cacao populations in Bahia, Brazil, detected by isozymes and RAPD markers. Crop Breeding and Applied Biotechnology, 1, 377-384.
[36] Teixeira-Cabral, T.A., Sakiyama, N.S., Zambolim, L., Pereira, A.A., Gon?alves-Barros, E. and Sakiyama, C.C.H. (2002) Reproducibility of the RAPD marker and its efficiency in coffee tree genotype grouping analysis. Crop Breeding and Applied Biotechnology, 2, 121-129.
[37] Wang, J.C., Hu, J., Liu, N.N., Xu, H.M. and Zhang, S. (2006) Investigation of combining plant genotypic values and molecular marker information for constructing core subsets. Journal of Integrated Plant Biology, 48, 1371- 1378.
[38] Lachenaud, P. and Zhang, D. (2008) Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Annals of Forest Science, 65, 310.
[39] Magdalita, P.M., Villegas, V.M., Pimentel, R.B. and Bayot, R.G. (1988) Reaction of papaya and related species to ringspot virus Phillipp. Journal of Crop Science, 3, 232-234.
[40] Persley, D.M. and Thomas, J.E. (1994) Screening for PRSV resistance. Annual Meeting of Control of Ringspot in papaya, Hawaii, 41-44.
[41] Chavarriaga-Aguirre, P., Maya, M.M., Tohme, J., Duque, M.C., Iglesias, C., Bonierbale, M.W., Kresovich, S. and Kochert, G. (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Molecular Breeding, 5, 263-273.
[42] Bortolini, F., Dall’Agnol, M. and Schifino-Wittmann, M.T. (2006) Molecular characterization of the USDA white clover (Trifolium repens L.) core collection by RAPD markers. Genetic Resources and Crop Evolution, 53, 1081-1087.
[43] Pérez, J.O., Dambier, D., Ollitrault, P., D′Eeckenbrugge, G.O., Brotiers, P., Froelicher, Y. and Risterucci, A.M. (2006) Microsatellite markers in Carica papaya L.: Isolation, characterization and transferability to Vascon- cellea species. Molecular Ecology Research, 6, 212-217.
[44] Eustice, M., Yu, Q., WanLai, C., Thimmapuran, J., Liu, L., Afan, M., Presting, G. and Ming, R. (2008) Development and application of microsatellite markers for ge-nomics analysis in papaya. Tree Genetic and Genomic, 4, 333-341.