One Step Forward, Two Steps Back: Biconvergence of Washed Harmonic Series

Show more

References

[1] D. Bressoud, “A Radical Approach to Real Analysis,” Mathematical Association of America, Washington DC, 1994.

[2] L. Zhmud, “Pythagoras as a Mathematician,” Historia Mathematica, Vol. 16, No. 3, 1989, pp. 249-268.
doi:10.1016/0315-0860(89)90020-7

[3] A. Lempner, “A Curious Convergent Series,” The American Mathematical Monthly, Vol. 21, No. 2, 1914, pp. 48-50. doi:10.2307/2972074

[4] M. Hoffman, “The Algebra of Multiple Harmonic Series,” Journal of Algebra, Vol. 194, No. 2, 1997, pp. 477-495. doi:10.1006/jabr.1997.7127

[5] M. E. Hoffman and C. Moen, “Sums of Triple Harmonic Series,” Journal of Number Theory, Vol. 60, No. 2, 1996, pp. 329-331. doi:10.1006/jnth.1996.0127

[6] G. Kawashima, “A Generalization of the Duality for Multiple Harmonic Sums,” Journal of Number Theory, Vol. 130, No. 2, 2010, pp. 347-359.
doi:10.1016/j.jnt.2009.03.002

[7] H. Tsumura, “Multiple Harmonic Series Related to Multiple Euler Numbers,” Journal of Number Theory, Vol. 106, No. 1, 2004, pp. 155-168.
doi:10.1016/j.jnt.2003.12.004

[8] D. Bradley, “Duality for Finite Multiple Harmonic q-Series,” Discrete Mathematics, Vol. 300, No. 1-3, 2005, pp. 44-56. doi:10.1016/j.disc.2005.06.008