Overlapping Nonmatching Grid Method for the Ergodic Control Quasi Variational Inequalities

Show more

References

[1] M. Boulbrachène, “On Numerical Analysis of the Ergodic Control Quasi-Variational Inequalities,” International Mathematical Forum, No. 42, 2009, pp. 2051-2057.

[2] J. P. Zeng and S. Z. Zhou, “Schwarz Algorithm for the Solution of Variational Inequalities with Nonlinear Source Terms,” Applied Mathematics and Computation, Vol. 97, No. 1, 1998, pp. 23-35.
doi:10.1016/S0096-3003(97)10129-1

[3] P. L. Lions and B. Perthame, “Quasi-Variational Inequalities and Ergodic Impulse Control,” SIAM Journal on Control and Optimization, Vol. 24, No. 4, 1986, pp. 604-615.

[4] A. Bensoussan, “Stochastic Control by Functional Analysis Methods,” North-Holland Publishing Company, Amsterdam, 1982.

[5] A. Bensoussan and J. L. Lions, “Impulse Control and Quasi-Variational Inequalities,” Gauthiers Villars, Paris, 1984.

[6] P. Cortey-Dumont, “Approximation numérique d’une IQV liée a des problèmes de gestion de stock,” RAIRO, Anal. Numer, Vol. 14, 1980, pp. 335-346.

[7] P. G. Ciarlet and P. A. Raviart, “Maximum Principle and Uniform Convergence for the Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 2, No. 1, 1973, pp. 17-31.

[8] M. Haiour and S. Boulaaras, “Overlapping Domain Decomposition Methods for Elliptic Quasi-Variational Ine- qualities Related to Impulse Control Problem with Mixed Boundary Conditions,” Proceedings—Mathematical Sciences, Vol. 121, No. 4, 2011, pp. 481-493.

[9] B. Perthame, “Some Remarks on Quasi-Variational Inequalities and the Associated Impulsive Control Problem,” Annales de l’I. H. P., Section C, Vol. 2, No. 3, 1985, pp. 237-260.

[10] C. Xiao-Chuan, T. P. Matew and M. Vsakis, “Maximum nom Analysis of Ovelapping Non-Matching Grid Discretisations of Elliptic Equation,” SIAM Journal on Numerical Analysis, Vol. 5, 2000, pp. 1709-1728.

[11] J. Bramble, J. Pascial, J. wang and J. xu, “Convergence Estimates for Product Iterative Methods with Applications to Domain Decomposition,” Mathematics of Computation, Vol. 57, 1991, pp. 1-21.
doi:10.1090/S0025-5718-1991-1090464-8

[12] M. Boulbrachène, P. Cortey-Dumont and J. C. Miellou, “Approximation Convergence for a Subdomain Decomposition Method,” 1er Symposium International sur la Méthode de Sous-Domaine, Paris, 1987.

[13] M. Boulbrachène and S. Saadi, “Maximum Norm Analysis of an Overlapping Nonmatching Grids Method for the Obstacle Problem,” Hindawi Publishing Corporation, Cairo, 2006, pp. 1-10.

[14] M. Dryja, “An Additive Schwarz Algorithm for Two-and Three-Dimensional Finite Element Elliptic Problems, In: T. Chan, et al., Eds., Domain Decomposition Methods, Philadephia, SIAM, 1989, pp. 168-172.

[15] M. Dryja and O. Widlund, “Some Domain Decomposition Algorithms for Elliptic Problems,” In: L. Hayes and D. Kincaid, Eds, Iterative Methods for Large Systems, Academic Press, Boston, 1990, pp. 273-291.

[16] P. Cortey-Dumont, “Sur les inéquations variationnelles a opérateurs non coercifs,” M2AN, Vol. 19, 1985, pp. 195-212.

[17] P. Cortey-Dumont, “On Finite Element Approximation in the L-Norm of Variational Inequalities with Nonlinear Operators,” Numerische Mathematik, Vol. 47, No. 1, 1985, pp. 45-57. doi:10.1007/BF01389875

[18] T. Chan, T. Hou and P. Lions, “Geometry Related Convergence Results for Domain Decomposition Algorithms,” SIAM Journal on Numerical Analysis, Vol. 28, No. 2, 1991, pp. 378-391. doi:10.1137/0728021