WJM  Vol.3 No.2 , April 2013
Structural Reliability Assessment by a Modified Spectral Stochastic Meshless Local Petrov-Galerkin Method
Author(s) Guang Yih Sheu
ABSTRACT

This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.


Cite this paper
G. Sheu, "Structural Reliability Assessment by a Modified Spectral Stochastic Meshless Local Petrov-Galerkin Method," World Journal of Mechanics, Vol. 3 No. 2, 2013, pp. 101-111. doi: 10.4236/wjm.2013.32008.
References
[1]   R. G. Ghanem and P. D. Spanos, “Stochastic Finite Elements: A Spectral Approach,” Revised Edition, Dover Publications, New York, 2012.

[2]   S. Rahman and B. N. Rao, “An Element-Free Galerkin Method for Probabilistic Mechanics and Reliability,” International Journal of Solids and Structures, Vol. 38, No. 50-51, 2001, pp. 9313-9330.

[3]   V. Papadolous, G. Soimiris and M. Papadrakis, “Buckling Analysis of I-Section Portal with Stochastic Imperfections,” Engineering Structures, Vol. 47, 2013, pp. 54-66. doi:10.1016/j.engstruct.2012.09.009

[4]   K. Sepahvand, S. Marburg and H.-J. Hardtke, “Stochastic Free Vibration of Orthotropic Plates Using Generalized Polynomial Chaos Expansion,” Journal of Sound and Vibration, Vol. 331, No. 1, 2012, pp. 167-179. doi:10.1016/j.jsv.2011.08.012

[5]   G. Y. Sheu, “Prediction of Probabilistic Settlements via Spectral Stochastic Meshless Local Petrov-Galerkin Method,” Computers and Geotechnics, Vol. 38, No. 4, 2011, pp. 407-415. doi:10.1016/j.compgeo.2011.02.001

[6]   D. Xiu and G. E. Karniadakis, “Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 137-167. doi:10.1016/S0021-9991(03)00092-5

[7]   S. N. Atluri and T. Zhu, “A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,” Computational Mechanics, Vol. 22, No. 2, 1998, pp. 117-127. doi:10.1007/s004660050346

[8]   S. N. Atluri and S. Shen, “The Meshless Local Petrov-Galerkin (MLPG) Method,” Tech Science Press, Ecino, 2002.

[9]   A. M. Hasofer and N. C. Lind, “Exact and Invariant Second-Moment Code Format,” Journal of Engineering Mechanics ASCE, Vol. 100, No. 1, 1974, pp. 1227-1238.

[10]   S. Timoshenko and J. N. H. Goodier, “Theory of Elasticity,” 3rd Edition, McGraw-Hill Publishing Company, New York, 1970.

[11]   R. E. Melchers, “Structural Reliability Analysis and Prediction,” 2nd Edition, John Wiley and Sons, England, 1999.

[12]   B. K. Low and W. H. Tang, “Efficient Spreadsheet Algorithm for First-Order Reliability Method,” Journal of Engineering Mechanics ASCE, Vol. 133, No. 12, 2007, pp. 1378-1387. doi:10.1061/(ASCE)0733-9399(2007)133:12(1378)

[13]   R. Rackwitz and B. Fiessler, “Structural Reliability under Combined Random Load Sequences,” Computers and Structures, Vol. 9, No. 5, 1978, pp. 484-494. doi:10.1016/0045-7949(78)90046-9

[14]   R. Fletcher, “VA10AD Harwell Subroutine Library,” A. E. R. E. Harwell, Oxfordshire, 1972.

[15]   B. Sudret and A. D. Kiureghian, “Stochastic Finite Elements and Reliability: A State-of-Art Report,” Report No. UCB/SEMM-2000/08, University of California, Berkeley, 2000.

 
 
Top