ABC  Vol.3 No.2 , April 2013
Microbial analysis and surface characterization of SABIC carbon steel corrosion in soils of different moisture levels
ABSTRACT

We tested the effect of three types of soil inSaudi Arabiaon SABIC carbon steel grade X60 (SCSX60) specimens. The results showed that the environment effect of different condition was very clear, indicating that the studied soils were very corrosive SCSX60 specimens. The composition and morphology of corrosion were different in the tested soil based on moisture content and immersion period. In addition, the results showed that bacteria play an important role in the corrosion of SCSX60. The morphologies of corrosion products were analyzed using scanning electron microscopy to further elucidate the complex systems found in the studied soil.


Cite this paper
Al-Judaibi, A. and Al-Moubaraki, A. (2013) Microbial analysis and surface characterization of SABIC carbon steel corrosion in soils of different moisture levels. Advances in Biological Chemistry, 3, 264-273. doi: 10.4236/abc.2013.32030.
References
[1]   Rassenfoss, S. (2011) From bacteria to barrels: Microbiology having an impact on oil fields. Journal of Petroleum Technology, 32, 32-39.

[2]   Rassenfoss, S. (2011) From bacteria to barrels: Microbiology having an impact on oil fields. Journal of Petroleum Technology, 32, 32-39.

[3]   Puls, R.W., Paul, C.J. and Powell, R.M. (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 14, 989-1000.

[4]   Gittel, A., Sørensen, K.B., Skovhus, T.L., Ingvorsen, K., and Schramm, A. (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Applied and Environmental Microbiology, 75, 7086-7096. doi:10.1128/AEM.01123-09

[5]   Obuekwea, C.O., Westlake, D.W.S., Plambeck, J.A. and Cook, F.D. (1981) Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil I. polarization characteristics. Corrosion, 37, 461-467. doi:10.5006/1.3585992

[6]   Obuekwea, C.O., Westlake, D.W.S., Plambeck, J.A. and Cook, F.D. (1981) Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil I. polarization characteristics. Corrosion, 37, 461-467. doi:10.5006/1.3585992

[7]   Duan, J., Wu, S. Zhang, X., Huang, G., Du, M. and Hou, B. (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochimica Acta, 54, 22-28. doi:j.electacta.2008.04.085

[8]   Schwermer, C.U., Lavik, G., Abed, R.M.M., Dunsmore, B., Ferdelman, T.G., Stoodley, P., Gieseke, A. and De Beer, D. (2008) Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Applied and Environmental Microbiology, 74, 2841-2851. doi:10.1128/AEM.02027-07

[9]   Jack, R.F., Ringelberg, D.B. and White, D.C. (1992) Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm. Corrosion Science, 33, 1843-1853. doi:0010-938X(92)90188-9

[10]   Obuekweb, C.O., Westlake, D.W.S., Cook, F.D. and Costerton, J.W. (1981) Surface changes in mild steel coupons from the action of corrosion-causing bacteria. Applied and Environmental Microbiology, 41, 766-774.

[11]   Thierry, D. and Sand, W. (2002) Microbially influenced corrosion: Corrosion mechanisms in theory and practice. In: Marcus, P. Ed., CRC Press, 16, 563-603.

[12]   Maier, R.M., Pepper, I.L. and Gerba, C.P. (2009) Environmental microbiology. 2nd Edition, ELSEVIER. 387439. doi:B978-0-12-370519-8.00020-1

[13]   Maier, R.M., Pepper, I.L. and Gerba, C.P. (2009) Environmental microbiology. 2nd Edition, ELSEVIER. 387439. doi:B978-0-12-370519-8.00020-1

[14]   Maier, R.M., Pepper, I.L. and Gerba, C.P. (2009) Environmental microbiology. 2nd Edition, ELSEVIER. 387439. doi:B978-0-12-370519-8.00020-1

[15]   Allred, R.C. (1958) Methods used for the counting of sulfate-reducing bacteria and for the screening of bactericides. Producers Monthly, 22, 32-34.

[16]   Oguzie, E.E., Agochukwu, I.B. and Onuchukwu, A.I. (2004) Monitoring the corrosion susceptibility of mild steel in varied soil textures by corrosion product count technique. Mater. Chem. Phys., 84, 1-6. doi:10.1016/j.matchemphys.2003.09.002

[17]   Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994) Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins.

[18]   Watanabe, T. (2002) Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. 2nd Ed., CRC Press. doi:10.1201/9781420040821

[19]   Lane, D.J., Harrison, A.P., Stahl, D., Pace, B., Giovannoni, S.J., Olsen, G.J. and Pace, N.R. (1992) Evolutionary relationships among sulfurand iron-oxidizing eubacteria. Journal of Bacteriology, 174, 269-278.

[20]   Hartomo, W.A., Rizki, I.N., Widyanto, B. and Chaerun, S.K. (2010) Microbiologically influenced corrosion (MIC) of AISI 1006 carbon steel by Acidithiobacillus ferrooxidans and Desulvofibrio piger. Proceedings of the Third International Conference on Mathematics and Natural Sciences, 895-905.

[21]   Javaherdashti, R. (2008) Microbiologically influenced corrosion “An engineering insight”. Springer, 1-35.

[22]   Jeffery, R. and Melchers, R.E. (2003) Bacteriological influence in the development of iron sulfide species in marine immersion environments. Corrosion Science, 45, 693-714. doi:S0010-938X(02)00147-6

[23]   Phillips, D.H., Watson, D.B., Roh, Y. and Gu, B. (2003) Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier. Journal of Environmental Quality, 32, 2033-2045. doi:10.2134/jeq2003.2033

[24]   Anderko, A. and Shuler, P.A. (1997) Computational approach to predicting the formation of iron sulfide species using stability diagrams. Computers & Geosciences, 23, 647-658. doi:S0098-3004(97)00038-1

[25]   Hamilton, W.A. (1994) Biocorrosion: The action of Sulfate-reducing bacteria. In: Ratledge, C., Ed., Biochemistry of Microbial Degradation, Kluwer Academic, Dordrecht, 555-570. doi:10.1007/978-94-011-1687-9_17

[26]   McNeil, M.B. and Little, B.J. (1990) Mackinawite formation during microbial corrosion. Corrosion, 46, 599-600. doi:10.5006/1.3585154

[27]   Videla, H.A. (1996) Manual of biocorrosion. Lewis Publishers, Boca Raton, 37-67.

[28]   Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F. and Newman, D.K. (2002) Microbial iron respiration can protect steel from corrosion. Applied and Environmental Microbiology, 63, 1440-1445. doi:10.1128/AEM.68.3.1440-1445.2002

[29]   Graff, W.J. (1981) Introduction to offshore structures. Gulf Publishing Co., Houston, Chapter 12.

[30]   Panter, C. (2007) Ecology and characteristics of iron reducing bacteria-suspected agents in corrosion of steels, Mic—An international perspective symposium, extrin corrosion consultants. Curtin University, Perth, 14-15.

[31]   King, R.A. and Mille J.D. (1971) Corrosion by the sulfate reducing bacteria. Nature, 233, 491-492. doi:10.1038/233491a0

[32]   Jack, T.R., Wilmott, A., Stockdale, J., Van Boven, G., Worthingham, R.G. and Sutherby, R.L. (1998) Corrosion consequences of secondary oxidation of microbial corrosion. Corrosion, 54, 246-252. doi:10.5006/1.3284850

[33]   Newman, R.C., Wong, W.P. and Garner, A. (1986) A mechanism of microbial pitting in stainless steel. Corrosion, 42, 489-491. doi:10.5006/1.3583056

[34]   Pourbaix, A., Aguiar, L.E. and Clarinval, A.M. (1993) Local corrosion processes in the presence of sulphatereducing bacteria: Measurements under biofilms. Corrosion Science, 35, 693-698. doi:10.1016/0010-938X(93)90205-U

[35]   Schaschl, E. (1980) Elemental sulfur as a corrodent in deaerated neutral aqueous solutions. Materials Performance, 19, 9-12.

[36]   Hausler, R.H., Goeller, L.A., Zimmerman, R.P. and Rosenwald, R.H. (1972) Contribition to the “filming amine” theory: An interpretation of experimental results. Corrosion, 28, 7-16. doi:10.5006/0010-9312-28.1.7

[37]   Svenningsen, G., Palencsár, A. and Kvarekvål, J. (2009) Investigation of iron sulfide surface layer growth in aqueous H2S/CO2 environments. Corrosion, 09359.

[38]   Gu, B., Watson, D. B., Wu, L., Philips, D.H., White, D.C., and Zhou J.Z. (2002) Microbiological characteristics in a zero-valent iron reactive barier. Environmental Monitoring and Assessment, 77, 293-309. doi:10.1023/A:1016092808563

[39]   Scherer, M.M., Richter, S., Valentine, R.L. and Alvarez, P.J. (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater cleanup. Critical Reviews in Environmental Science and Technology, 30, 363-411. doi:10.1080/10643380091184219

[40]   Zhao, X., Duan, J., Houand, B. and Wu, S. (2007) Effect of sulfate-reducing bacteria on corrosion behavior of mild steel in sea mud. Journal of Materials Science and Technology, 23, 323-328.

[41]   McNeil, M.B., Jones, J.M. and Little, B.J. (1991) Mineralogical Fingerprints for Corrosion Processes Induced by Sulfate-Reducing Bacteria. Corrision, 580.

[42]   Arzola, S., Mendoza-Flores, J., Duran-Romero, R. and Genesca, J. (2006) Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solutions. Corrosion, 62, 433-443. doi:10.5006/1.3278280

 
 
Top