Back
 NS  Vol.5 No.4 A , April 2013
Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up
Abstract: Seven years after the discovery of the chemoautotrophic sulfidic groundwater site of the Ayyalon cave, its macrofauna can be fully reviewed. It consists of six endemic stygobiont and troglo-biont crustaceans and other arthropods and two species still with unclear status. The taxonomic list is followed by brief discussions on the systematics of the species as well as by a few comments concerning the eventual broader zoogeographical and speleological implications of the Ayyalon faunistic findings, as they appeared in literature.
Cite this paper: Por, F. , Dimentman, C. , Frumkin, A. and Naaman, I. (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): A summing up. Natural Science, 5, 7-13. doi: 10.4236/ns.2013.54A002.
References

[1]   Por, F.D. (2007) Ophel: A groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel. Hydrobiologia, 592, 1-10. doi:10.1007/s10750-007-0795-2

[2]   Frumkin, A. and Gvirtzman. H. (2006) Cross-formational rising groundwater at an artesian karstic basin: The Aya-lon Saline Anomaly, Israel. Journal of Hydrology, 318, 316-333. doi:10.1016/j.jhydrol.2005.06.026

[3]   Naaman, I. (2011) The karst system and the ecology of Ayalon Cave, Israel. M.S. Thesis, Hebrew University of Jerusalem, Jerusalem.

[4]   Defaye, D. and Por, F.D. (2010) Metacyclops (Cope-poda, Cyclopidae) from Ayyalon cave, Israel. Crustaceana, 83, 399-423. doi:10.1163/001121610X12627655658320

[5]   Dimentman, Ch. and Por, F.D. (1991) The origin of the subterranean fauna of the Jordan-Dead Sea Rift Valley: New data. Stygologia, 6, 155-163.

[6]   Defaye, D. and Dussart, B.H. (1995) The cyclopid fauna (Crustacea, Copepoda) of inland waters of Israel. 1. First data from semi-arid and arid regions. Hydrobiologia, 310, 1-10. doi:10.1007/BF00008178

[7]   Wagner, H.P. (2012) Tethysbaena ophelicola n.sp. (Ther-mosbaenacea), a new prime consumer of the Ophel biota, Ayyalon Cave, Israel. Crustaceana, 85, 1571-1587. doi:10.1163/156854012X651646

[8]   Wagner, H.P. (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). Zoologische Verhandelingen, 291, 1-338.

[9]   Tsurnamal, M. (2008) A new species of the stygobiotic blind prawn Typhlocaris Calman 1909 (Decapoda, Pala-emonidae, Typhlocaridinae) from Israel. Crustaceana, 81, 487-501.

[10]   Levy, G. (2007) The first troglobite scorpion from Israel and a new chaetoid family (Arachnida: Scorpiones). Zoology in the Middle East, 40, 91-96. doi:10.1080/09397140.2007.10638209

[11]   Fet, V., Soleglad, M.E. and Zonstein, S.L. (2011) The genus Akrav Levy, 2007 (Scorpiones: Akravidae ) revisited. Euscorpius-Occasional Publications in Scorpiology, 134, 49 pages.

[12]   ?ur?i?, B.P.M. (2008) Ayyalonia dimentmani n. g., n. sp. (Ayyaloniini, n. trib., Chthoniidae, Pseudoscorpiones) from a cave in Israel. Archives of Biological Sciences Belgrade, 60, 331-339

[13]   Mendes, L.E., Molero-Baltanás, R., Bach de Roca, C. and Gaju-Ricard, M. (2011) New data and new species of Microcoryphia and Zygentoma (Insecta) from Israel. Annales Societée Entomologique France, 47, 384-393.

[14]   Engel, A.S. (2007) Observations on the biodiversity of Sulfidic Karst Habitats. Journal of Cave and Karst Studies, 69,187-206.

[15]   Flot, J.-F., W?rheide, G. and Dattagupta, Sh. (2010) Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. Evolutionary Biology, 10, 14 pages.

[16]   Karaman, G.S., Borowsky, B. and Dattagupta, S. (2010) Two new species of the genus Niphargus Schi?dte (Amphipoda fam. Niphargidae) from the Frasassi cave system. Zootaxa, 2439, 35-52.

[17]   Por, F.D. (2011) Groundwater life: Some new biospeleological views resulting from the ophel paradigm. Travaux de l’Institut Spéologique “émile Racovitza”, 61-76.

[18]   Tsurnamal, M. (1978) The biology and ecology of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana, 34, 195-213. doi:10.1163/156854078X00736

[19]   Tsurnamal, M. (1978) Temperature preference of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana, 34, 225-234. doi:10.1163/156854078X00781

[20]   Hüppop, K. (2001) How do cave animals cope with food scarcity in caves? In: Wilkens, H., Culver, D.C. and Humphreys, W.F., Eds., Subterranean Ecosystems, Elsevier Press, Amsterdam, 417-432.

[21]   Por, F.D. (2008) Deuterobiosphere the Chemosynthetic Second Biosphere of the Globe. A First Review. Integrative Zoology, 3, 101-114. doi:10.1111/j.1749-4877.2008.00083.x

[22]   Dattagupta, S, Schaperdoth, I., Montanari, A., Mariani, S., Kita, N., Valley, J.W. and Macalady, J.L. (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. The ISME Journal, 3, 935-943. doi:10.1038/ismej.2009.34

[23]   Hüppop, K. (2005) Adaptation to low food. In: Culver, D.C. and White, W.B., Eds., Encyclopedia of Caves, Elsevier Academic Press, Amsterdam, 4-10.

[24]   Bishop, R.E., Kakuk, B. and Torres, J.J. (2004) Life in the hypoxic and anoxic zones: Metabolism and proximate composition of Caribbean troglobitic crustaceans, with observations on the water chemistry of anchialine caves. Journal of Crustacean Biology, 24, 379-393. doi:10.1651/C-2459

[25]   Por, F.D. (2012) Ophel, the newly discovered hypoxic chemolithoautotrophic groundwater biome: A window to ancient animal life. In: Altenbach, A.V., Bernhard, J. and Seckbach, J., Eds., Anoxia: Evidence for Eukaryotic Survival and Paleontological Strategies, Springer Verlag, 465-478.

[26]   Danovaro, R., Dell’Anno, A., Pusceddu, A., Gambi, C., Heiner, I. and Kristensen, R.M. (2010) The first metazoan living in permanently anoxic conditions. BMC Biology, 8, 30. doi:10.1186/1741-7007-8-30

[27]   Oren, A. (2012) Diversity of anaerobic prokaryotes and eukaryotes: breaking long-established dogmas. In: Altenbach, A.V., Bernhard, J. and Seckbach, J. Eds., Anoxia: Evidence for Eukaryotic Survival and Paleontological Strategies, Springer Verlag, 41-47.

[28]   Por. F.D. (1986) Crustacean biogeography of the Late Middle Miocene Middle Eastern Landbridge. In: Gore, R.H. and Heck, K.L. Eds., Crustacean Biogeography, Boston, 69-84.

[29]   Danielopol, D.L. and Rouch, R. (2005) Invasion, active versus passive. In: Culver, D.C. and White, W.B., Eds., Encyclopedia of Caves, Elsevier Academic Press, Amsterdam, 305-310.

[30]   Negrea, S. (2009) A remarkable finding that suggests the existence of a new groundwater biome based on chemo-autotrophic resources, named “Ophel” by F. D. Por. Travaux de l’Institut Speologie Emile Racovitza, 48, 83-91.

[31]   Humphreys, W.F., Kornicker, L.S. and Danielopol, D.L (2010) On the origin of Danielopolina baltanasi sp.n. (Ostracoda, Thaumatocypridoidea) from the anchialine caves on Christmas Island a seamount in the Indian Ocean. Crustaceana, 82, 1177-1203. doi:10.1163/156854009X423157

[32]   Porter, M.L. and Culver, D.C. (2010) Tethyan distribution of stygobionts: Fact or fiction? 20th International Conference on Subterranean Biology, Postojna, 29 August-3 September 2010.

[33]   Sarbu, S.M. (2001) Movile, a chemoautotrophically based ecosystem. In: Wilkens, H., Culver, D.D. and Humphreys, W.F., Eds., Subterranean Ecosystems of the World 30, Elsevier, Amsterdam, 319-343.

 
 
Top