WJNST  Vol.3 No.2 , April 2013
Production and Quality Control of 64Cu from High Current Ni Target
ABSTRACT

A new production method of no-carrier-added 64Cu was tested using a new target prepared by electroplating of Ni on a silver layer (thickness 35 μm) previously electroplated on a pure copper target support. This method meets cost effective production and quality of the produced 64Cu criteria. The quality of the electroplated layers has been tested under the bombardment by more than 200 μA of proton beam using water cooled target system. A separation and purification setup was elaborated to produce high quantity and high specific activity of 64CuCl2 suitable for labeling different ligands in order to be used in therapy and diagnosis. A semi-automated target dissolution and separation system has been developed and achieved for 64Cu production. The separation chemistry is based on a chromatographic column system.


Cite this paper
A. Rayyes and Y. Ailouti, "Production and Quality Control of 64Cu from High Current Ni Target," World Journal of Nuclear Science and Technology, Vol. 3 No. 2, 2013, pp. 72-77. doi: 10.4236/wjnst.2013.32012.
References
[1]   C. P. J. Blower, J. S. Lewis and J. Zweit, “Copper Radionuclides and Radiopharmaceuticals in Nuclear Medicine,” Nuclear Medicine and Biology, Vol. 23, No. 8, 1996, pp. 957-980. doi:10.1016/S0969-8051(96)00130-8

[2]   T. J. Wadas, E. H. Wong, G. R. Weisman and C. J. Anderson, “Copper Chelation Chemistry and Its Role in Copper Radiopharmaceuticals,” Current Pharmaceutical Design, Vol. 13, No. 1, 2007, pp. 3-16. doi:10.2174/138161207779313768

[3]   A. Obata, S. Kasamatsu, J. S. Lewis, T. Furukawa, S. Takamatsu, J. Toyohara, T. Asai, M. J. Welch, S. G. Adams, H. Saji, Y. Yonekura and Y. Fujibayashi, “Basic Characterization of 64Cu-ATSM as a Radiotherapy Agent,” Nuclear Medicine and Biology, Vol. 32, No. 1, 2005, pp. 21-28. doi:10.1016/j.nucmedbio.2004.08.012

[4]   A. Obata, M. Yoshimoto, S. Kasamatsu, H. Naiki, S. Takamatsu, K. Kashikura, T. Furukawa, J. S. Lewis, M. J. Welch, H. Saji, Y. Yonekura and Y. Fujibayashi, “Intra-Tumoral Distribution of 64Cu-ATSM: A Comparison Study with FDG,” Nuclear Medicine and Biology, Vol. 30, No. 5, 2003, pp. 529-534. doi:10.1016/S0969-8051(03)00047-7

[5]   P. McQuade, K. E. Martin, T. C. Castle, M. J. Went, P. J. Blower, M. J. Welch and J. S. Lewis, “Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) Complexes as Hypoxia Imaging Agents,” Nuclear Medicine and Biology, Vol. 32, No. 2, 2005, pp. 147-156. doi:10.1016/j.nucmedbio.2004.10.004

[6]   A. Obata, S. Kasamatsu, D. W. McCarthy, M. J. Welch, H. Saji, Y. Yonekura and Y. Fujibayashi, “Production of Therapeutic Quantities of 64Cu Using a 12 MeV Cyclotron,” Nuclear Medicine and Biology, Vol. 30, No. 5, 2003, pp. 535-539. doi:10.1016/S0969-8051(03)00024-6

[7]   M. A. Avila-Rodriguez, J. A. Nyeb and R. J. Nickles, “Simultaneous Production of High Specific Activity 64Cu and 61Co with 11.4 MeV Protons on Enriched 64Ni Nuclei,” Applied Radiation and Isotopes, Vol. 65, No. 10, 2007, pp. 1115-1120. doi:10.1016/j.apradiso.2007.05.012

[8]   X. Hou, U. Jacobsen and J. C. Jorgensen, “Separation of No-Carrier-Added 64Cu from a Proton Irradiated 64Ni Enriched Nickel Target,” Applied Radiation and Isotopes, Vol. 57, No. 6, 2002, pp. 773-777. doi:10.1016/S0969-8043(02)00170-7

[9]   D. W. McCarthy, R. E. Shefer, R. E. Klinkowstein, L. A. Bass, W. H. Margeneau, C. S. Culter, C. J. Anderson and M. J. Welch, “Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron,” Nuclear Medicine and Biology, Vol. 24, No. 1, 1997, pp. 35-43. doi:10.1016/S0969-8051(96)00157-6

[10]   A. H. Al Rayyes and Y. Ailouti, “Routine Simultaneous Production of No-Carrier Added High Purity 64Cu and 67Ga,” Nukleonika, Vol. 56, No. 4, 2011, pp. 259-262.

[11]   S. V. Smith, D. J. Waters and N. D. Bartolo, “Separation of 64Cu from 67Ga Waste Products Using Anion Exchange and Low Acid Aqueous/Organic Mixtures,” Radiochimica Acta, Vol. 75, No. 2, 1996, pp. 65-68.

 
 
Top