WJNST  Vol.3 No.2 , April 2013
Thermal Conductivity Measurement of Zr-ZrO2 Simulated Inert Matrix Nuclear Fuel Pellet

For an evaluation of a thermal conductivity of Zr + 30 vol% ZrO2 simulated inert matrix nuclear fuel pellet, a simulated fuel pellet was fabricated using a hot-pressing method at 800°C in a vacuum and at a 20 MPa load. And several thermophysical properties of the simulated inert matrix fuel pellet were measured and calculated. The thermal diffusivity and linear thermal expansion as a function of temperature of the simulated fuel pellet were measured using a laser flash method and a dilatometry, respectively. Finally, based on the experimental data, the thermal conductivity of the simulated inert matrix fuel pellet was calculated and evaluated.

Cite this paper
D. Kim, Y. Rhee, J. Kim, J. Oh, K. Kim and J. Yang, "Thermal Conductivity Measurement of Zr-ZrO2 Simulated Inert Matrix Nuclear Fuel Pellet," World Journal of Nuclear Science and Technology, Vol. 3 No. 2, 2013, pp. 46-50. doi: 10.4236/wjnst.2013.32008.
[1]   IAEA-TECDOC-1516, “Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors,” IAEA, VIENNA, 2006.

[2]   G. Ledergerber, C. Degueldre, P. Heimgartner, M. A. Pouchon and U. Kasemeyer, “Inert Matrix Fuel for the Utilization of Plutonium,” Progress in Nuclear Energy, Vol. 38, No. 3, 2001, pp. 301-308. doi:10.1016/S0149-1970(00)00122-0

[3]   R. Fielding, M. Meyer, J. Jue and J. Gan, “Gas-Cooled Fast Reactor Fuel Fabrication,” Journal of Nuclear Materials, Vol. 371, No. 1, 2007, pp. 243-249. doi:10.1016/j.jnucmat.2007.05.011

[4]   M. K. Meyer, R. Fielding and J. Gan, “Fuel Development for Gas-Cooled Fast Reactors,” Journal of Nuclear Materials, Vol. 371, No. 1-3, 2007, pp. 281-287. doi:10.1016/j.jnucmat.2007.05.013

[5]   D. E. Burkes, R. S. Fielding, D. L. Porter, M. K. Meyer and B. J. Makenas, “A US Perspective on Fast Reactor Fuel Fabrication Technology and Experience. Part II: Ceramic Fuels,” Journal of Nuclear Materials, Vol. 393, No. 1, 2009, pp. 1-11. doi:10.1016/j.jnucmat.2009.04.023

[6]   M. Burghartz, H. J. Matzke, C. Léger, G. Vambenepe and M. Rome, “Inert Matrices for the Transmutation of actinides: Fabrication, Thermal Properties and Radiation Stability of Ceramic Materials,” Journal of Alloy and Compound, Vol. 271-273, 1998, pp. 544-548. doi:10.1016/S0925-8388(98)00149-2

[7]   H. Kleykamp, “Selection of Materials as Diluents for Burning of Plutonium Fuels in Nuclear Reactors,” Journal of Nuclear Materials, Vol. 275, No. 1, 1999, pp. 1-11. doi:10.1016/S0022-3115(99)00144-0

[8]   M. A. Pouchoun, C. Degueldre and P. Tissot, “Determination of the Thermal Conductivity in Zirconia Based Inert Matrix Nuclear Fuel by Oscillating Differential Scanning Calorimetry and Laser Flash,” Thermochimica Acta, Vol. 323, No. 1-2, 1998, pp. 109-121. doi:10.1016/S0040-6031(98)00504-8

[9]   Y.-W. Lee, H. S. Kim, S. H. Kim, C. Y. Joung, S. H. Na, G. Ledergerber, P. Heimgartner, M. Pouchon and M. Burghartz, “Preparation of Simulated Inert Matrix Fuel with Different Powders by Dry Milling Method,” Journal of Nuclear Materials, Vol. 274, No. 1-2, 1999, pp. 7-14. doi:10.1016/S0022-3115(99)00094-X

[10]   K. S. Kumar, T. Mathews and N. P. Bhat, “Study on Thermal Decomposition and Sintering Behaviour of Internally Gelated Simulated Inert Matrix Fuel,” Thermochimica Acta, Vol. 427, No. 1-2, 2005, pp. 27-30. doi:10.1016/j.tca.2004.08.008

[11]   S. Baldi, J. Porta, Y. Peneleau, S. Pelloni, J.-M. Paratte and R. Chawla, “Importance of Zirconium Cross Sections in Calculating Reactivity Effects for Inert Matrix Fuels,” Progress in Nuclear Energy, Vol. 38, No. 3-4, 2001, pp. 351-354. doi:10.1016/S0149-1970(00)00133-5

[12]   A. Savchenko, I. Konovalov, S. Ershov, A. Laushkin, G. Kulakov, S. Maranchak, Y. Konovalov and E. Malamanova, “Zirconium Matrix Alloys for High Uranium Content Dispersion Type Fuel,” International Meeting on LWR Fuel Performance, Salamanca, 2006.

[13]   L. V. Duyn, “Evaluation of the Mechanical Behavior of a Metal Matrix Dispersion Fuel for Plutonium Burning,” Georgia Institute of Technology, 2003.

[14]   R. Fielding, J. F. Jue and J. Stuart, “Zirconium Metal Inert Matrix Fuel Fabrication,” Transactions of American Nuclear Society, Vol. 94, 2006, pp. 742-743.

[15]   B. H. Lee, Y. H. Koo and D. S. Sohn, “Modelling of Thermal Conductivity for High Burnup UO2 Fuel Retaining Rim Region,” Journal of Korean Nuclear Society, Vol. 29, No. 3, 1997, p. 201.

[16]   B. H. Lee, Y. H. Koo, J. S. Cheon, J. Y. Oh, H. K. Joo and D. S. Sohn, “A Thermal Conductivity Model for LWR MOX Fuel and Its Verification Using In-Pile Data,” Journal of Korean Nuclear Society, Vol. 34, No. 5, 2002, p. 482.

[17]   K. W. Song, Y. H. Jeong, K. S. Kim, J. G. Bang, T. H. Chun, H. K. Kim and K. N. Song, “High Burnup Fuel Technology in Korea,” Journal of Korean Nuclear Society, Vol. 40, No. 1, 2008, pp. 21-36.

[18]   P. G. Lucuta, H. J. Matzke and I. J. Hastings, “A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel: Review and Recommendations,” Journal of Nuclear Materials, Vol. 232, No. 2-3, 1996, pp. 166-180. doi:10.1016/S0022-3115(96)00404-7

[19]   C. Ronchi, M. Sheindlin, D. Staicu and M. Kinoshita, “Effect of Burn-Up on the Thermal Conductivity of Uranium Dioxide up to 100,000 MWdt-1,” Journal of Nuclear Material, Vol. 327, No. 1, 2004, pp. 58-76. doi:10.1016/j.jnucmat.2004.01.018

[20]   J. J. Carbajo, G. L. Yoder, S. G. Popov and V. K. Ivanov, “A Review of the Thermophysical Properties of MOX and UO2 Fuels,” Journal of Nuclear Materials, Vol. 299, No. 3, 2001, pp. 181-198. doi:10.1016/S0022-3115(01)00692-4

[21]   University of Sheffield and WebElements Ltd., “WebElements: The Periodic Table on the Web.” http://www.webelements.com/

[22]   K. Minato, T. Shiratori, H. Serizawa, K. Hayashi, K. Une, K. Nogita, M. Hirai and M. Amaya, “Thermal Conductivities of Irradiated UO2 and (U, Gd)O2,” Journal of Nuclear Materials, Vol. 288, No. 1, 2001, pp. 57-65. doi:10.1016/S0022-3115(00)00578-X

[23]   K. Kurosaki, R. Ohshima, M. Uno, S. Yamanaka, K. Yamamoto and T. Namekawa, “Thermal Conductivity of (U, Ce)O2 with and without Nd or Zr,” Journal of Nuclear Materials, Vol. 294, 2001, pp. 193-197. doi:10.1016/S0022-3115(01)00458-5

[24]   A. L. Loeb, “A Theory of Thermal Conductivity of Porous Materials,” Journal of American Ceramic Society, Vol. 37, No. 2, 1954, pp. 96-99. doi:10.1111/j.1551-2916.1954.tb20107.x