AM  Vol.4 No.4 , April 2013
Strongly Balanced 4-Kite Designs Nested into OQ-Systems
ABSTRACT

In this paper we determine the spectrum for octagon quadrangle systems [OQS] which can be partitioned into two strongly balanced 4-kitedesigns.


Cite this paper
M. Gionfriddo, L. Milazzo and R. Rota, "Strongly Balanced 4-Kite Designs Nested into OQ-Systems," Applied Mathematics, Vol. 4 No. 4, 2013, pp. 703-706. doi: 10.4236/am.2013.44097.
References
[1]   L. Berardi, M. Gionfriddo and R. Rota, “Balanced and Strongly Balanced Pk-Designs,” Discrete Mathematics, Vol. 312, No. 3, 2012, pp. 633-636. doi:10.1016/j.disc.2011.05.015

[2]   M. Gionfriddo, S. Kucukcifci and L. Milazzo, “Balanced and Strongly Balanced 4-Kite Systems,” Utilitas Mathematica, Vol. 90, 2013.

[3]   M. Gionfriddo and G. Quattrocchi, “Embedding Balanced P3-Designs into (Balanced) P4-Designs,” Discrete Mathematics, Vol. 308, No. 2-3, 2008, pp. 155-160. doi:10.1016/j.disc.2006.11.027

[4]   L. Berardi, M. Gionfriddo and R. Rota, “Perfect Octagon Quadrangle Systems with an Upper C4-System and a Large Spectrum,” Computer Science Journal of Moldova, Vol. 18, No. 3, 2010, pp. 303-318.

[5]   L. Gionfriddo, “Hexagon Kite Systems,” Discrete Mathematics, Vol. 309, No. 2, 2009, pp. 505-512. doi:10.1016/j.disc.2008.02.042

[6]   M. Gionfriddo and S. Milici, “Octagon Kite Systems,” Electronic Notes in Discrete Mathematics, Vol. 41, 2013.

[7]   L. Berardi, M. Gionfriddo and R. Rota, “Perfect Octagon Quadrangle Systems,” Discrete Mathematics, Vol. 310, No. 13-14, 2010, pp. 1979-1985. doi:10.1016/j.disc.2010.03.012

[8]   L. Berardi, M. Gionfriddo and R. Rota, “Perfect Octagon Quadrangle Systems with Upper C4-Systems,” Journal of Statistical Planning and Inference, Vol. 141, No. 7, 2011, pp. 2249-2255. doi:10.1016/j.jspi.2011.01.015

[9]   L. Berardi, M. Gionfriddo and R. Rota, “Perfect Octagon Quadrangle Systems—II,” Discrete Mathematics, Vol. 312, No. 3, 2012, pp. 614-620. doi:10.1016/j.disc.2011.05.009

[10]   S. Kucukcifci and C. C. Lindner, “Perfect Hexagon Triple Systems,” Discrete Mathematics, Vol. 279, No. 1-3, 2004, pp. 325-335. doi:10.1016/S0012-365X(03)00278-4

[11]   C. C. Lindner and A. Rosa, “Perfect Dexagon Triple Systems,” Discrete Mathematics, Vol. 308, No. 2-3, 2008, pp. 214-219. doi:10.1016/j.disc.2006.11.035

[12]   L. Gionfriddo, “Hexagon Quadrangle Systems,” Discrete Mathematics, Vol. 308, No. 2-3, 2008, pp. 231-241. doi:10.1016/j.disc.2006.11.037

[13]   L. Gionfriddo and M. Gionfriddo, “Perfect Dodecagon Quadrangle Systems,” Discrete Mathematics, Vol. 310, No. 22, 2010, pp. 3067-3071. doi:10.1016/j.disc.2009.02.029

[14]   M. Gionfriddo, L. Milazzo, A. Rosa and V. Voloshin, “Bicolouring Steiner Systems S(2,4,v),” Discrete Mathematics, Vol. 283, No. 1-3, 2004, pp. 249-253. doi:10.1016/j.disc.2003.11.016

[15]   S. Milici and G. Ragusa, “Maximum Embedding of an H(v-w,3,1) into a TS(v, λ),” Australasian Journal of Combinatorics, Vol. 46, 2010, pp. 121-127.

[16]   M. Gionfriddo and C. C. Lindner, “Construction of Steiner Quadruples Systems Having a Prescribed Number of Blocks in Common,” Discrete Mathematics, Vol. 34, No. 1, 1981, pp. 31-42. doi:10.1016/0012-365X(81)90020-0

[17]   Y. Chang and G. Lo Faro, “Intersection Numbers of Kirkman Triple Systems,” Journal of Combinatorial Theory A, Vol. 86, No. 2, 1999, pp. 348-361. doi:10.1006/jcta.1998.2948

[18]   M. Gionfriddo and Z. Tuza, “On Conjectures of Berge and Chvátal,” Discrete Mathematics, Vol. 124, No. 1-3, 1994, pp. 79-86. doi:10.1016/0012-365X(94)90086-8

[19]   M. Gionfriddo and S. Milici, “A Result Concerning Two Conjectures of Berge and Chvátal,” Discrete Mathematics, Vol. 155, No. 1-3, 1996, pp. 77-79. doi:10.1016/0012-365X(94)00371-O

 
 
Top