ABB  Vol.4 No.4 A , April 2013
New era in cancer immunotherapy: Twenty years to the discovery of monoclonal antibodies harnessing the immune system to eradicate tumors
ABSTRACT

The better understanding of the mechanism in which the immune system responds to the developing cancer provided the outcome in a new era in cancer immunotherapy. The tumor suppressive effect on the immune system is caused by negative T cell receptor signaling that abrogate immunity against the cancer cells. Novel monoclonal antibodies that target co-inhibitory receptors on T cells block the tumor induced inhibition of the immune system and enable the immune system to eradicate the tumors. The development of such antibodies started twenty years ago by the preparation of a monoclonal antibody termed BAT. A single administration of the antibody to tumor bearing mice resulted in striking anti tumor activity that was mediated by the lymphocytes. These studies provided a basis for the new era of cancer immunotherapy. The present review summarizes twenty years to the discovery of monoclonal antibodies harnessing the immune system to eradicate tumors.


Cite this paper
Hardy, B. and Raiter, A. (2013) New era in cancer immunotherapy: Twenty years to the discovery of monoclonal antibodies harnessing the immune system to eradicate tumors. Advances in Bioscience and Biotechnology, 4, 34-37. doi: 10.4236/abb.2013.44A005.
References
[1]   Chow, M.T., Moller, A. and Smyth, M.J. (2012) Inflammation and immune surveillance in cancer. Seminars in Cancer Biology, 22, 23-32. doi:10.1016/j.semcancer.2011.12.004

[2]   Villalba, M., Rathore, M.G., Lopez-Royuela, N., Krzywinska, E., Garaude, J. and Allende-Vega N. (2013) From tumor cell metabolism to tumor immune escape. The International Journal of Biochemistry & Cell Biology, 45, 106-113. doi:10.1016/j.biocel.2012.04.024

[3]   Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. and Schreiber, D. (2002) Cancer immunoediting: From immuno- surveillance to tumor escape. Nature Immunology, 3, 991- 998. doi:10.1038/ni1102-991

[4]   Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J. and Schreiber, R.D. (2001) IFNg and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410, 1107-1111. doi:10.1038/35074122

[5]   Browning, M.J. and Bodmer, W.F. (1992) MHC antigens and cancer: Implications for T-cell surveillance. Current Opinion in Immunology, 4, 613-618. doi:10.1016/0952-7915(92)90036-E

[6]   Reed, J.C. (1999) Mechanisms of apoptosis avoidance in cancer. Current Opinion in Oncology, 11, 68-72. doi:10.1097/00001622-199901000-00014

[7]   Ben-Baruch, A. (2006) Inflammation-associated immune suppression in cancer: The roles played by cytokines, chemokines and additional mediators. Seminars in Cancer Biology, 16, 38-52. doi:10.1016/j.semcancer.2005.07.006

[8]   Kresowik, T.P. and Griffith, T.S. (2009) Bacillus calmette— Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy, 1, 281-288. doi:10.2217/1750743X.1.2.281

[9]   Raez, L.E., Fein, S. and Podack, E.R. (2005) Lung cancer immunotherapy. Clinical Medicine & Research, 3, 221- 228. doi:10.3121/cmr.3.4.221

[10]   Dalgleish, A.G. (2000) Cancer vaccines. British Journal of Cancer, 82, 1619-1624.

[11]   Urbanska, K., Lanitis, E., Poussin, M., Lynn, R.C., Gavin, B.P., Kelderman, S., Yu, J., Scholler, N. and Powell Jr., D.J. (2012) A universal strategy for adoptive immuno- therapy of cancer through use of a novel t-cell antigen receptor. Cancer Research, 72, 1844-1852. doi:10.1158/0008-5472.CAN-11-3890

[12]   Bear, A.S. Cruz, C.R. and Foster, A.E. (2011) T cells as vehicles for cancer vaccination. Journal of Biomedicine and Biotechnology, 2011, Article ID: 417403.

[13]   Teitz-Tennenbaum, S., Wicha, M.S., Chang, A.E. and Li, Q. (2012) Targeting cancer stem cells via dendritic-cell vaccination. OncoImmunology, 8, 1401-1403. doi:10.4161/onci.21026

[14]   Aarntzen, E.J.G., De Vries, I.J.M., Lesterhuis, W.J., Schuurhuis, D., Jacobs, J.F.M., Bol, K., Schreibelt, G., Mus, G., De Wilt, J.H.W., Haanen, J.B.G., Schadendorf, D., Croockewit, A., Willeke, A., Blokx, A.M., Van Rossum, M.M., Kwok, W.W., Adema, G.J., Punt, C.J. and Figdor, C.J. (2012) Targeting CD4 T-helper cells improves the induction of antitumor responses in dendritic cell—Based vaccination. Cancer Research, 73, 1-11.

[15]   Lechner, M.G., Russell, S.M., Bass, R.S. and Epstein, A.L. (2011) Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors. Immunotherapy, 3, 1317-1340. doi:10.2217/imt.11.115

[16]   Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer immunotherapy comes of age. Nature, 480, 22-29. doi:10.1038/nature10673

[17]   Dauer, M., Schnurr, M. and Eigler Dauer, A. (2008) Dendritic cell-based cancer vaccination: Quo vadis? Expert Review of Vaccines, 7, 1041-1053. doi:10.1586/14760584.7.7.1041

[18]   Kirkwood, J.M., Butterfield, L.H., Tarhini, A.A., Zarour, H., Kalinski, P. and Ferrone, S. (2012) Immunotherapy of Cancer in 2012. Cancer Journal for Clinicians, 62, 309- 335. doi:10.3322/caac.20132

[19]   Pandolfi, F., Cianci, R., Pagliari, D., Casciano, F., Bagalla, C., Astone, A., Landolfi, R. and Barone, C. (2011) The immune response to tumors as a tool toward immunotherapy. Clinical and Developmental Immunology, 2011, Article ID: 894704. doi:10.1155/2011/894704

[20]   Bu, D., Tarrio, M., Maganto-Garcia, E., Stavrakis, G., Tajima, G., Lederer, J., Jarolim, P., Freeman, G.J., Sharpe, A.H. and Lichtman, A.H. (2011) Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1100-1107. doi:10.1161/ATVBAHA.111.224709

[21]   Pardoll, D.M. (2012) The blockade of immune checkpoints in cancer immunotherapy. Nature, 12, 252-264.

[22]   Wells, A.D. (2009) New insights into the molecular basis of T cell anergy: Anergy factors, avoidance sensors, and epigenetic imprinting. The Journal of Immunology, 182, 7331-7341. doi:10.4049/jimmunol.0803917

[23]   Liu, Q and Gao, B. (2008) Manipulation of MHC-I/TCR interaction for immune therapy. Cellular & Molecular Immunology, 5, 171-182. doi:10.1038/cmi.2008.21

[24]   Mescher, M.F., Popescu, F.E., Gerner, M., Hammerbeck, C.D. and Curtsinger, J.M. (2007) Activation-induced non- responsiveness (anergy) limits CD8 T cell responses to tumors. Seminars in Cancer Biology, 17, 299-308. doi:10.1016/j.semcancer.2007.06.008

[25]   Carreno, B.M. and Collins M. (2002) The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Annual Review of Immunology, 20, 29-53. doi:10.1146/annurev.immunol.20.091101.091806

[26]   Park, J.J., Omiya, R., Matsumura, Y., Sakoda, Y., Kuramasu, A., Augustine, M.M., Yao, S., Tsushima, F., Narazaki, H., Anand, A., Liu, Y., Strome, S.E., Chen, L. and Tamada, K. (2010) B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood, 116, 1291-1298. doi:10.1182/blood-2010-01-265975

[27]   Taylor, P.A., Lees, C.J., Fournier, S., Allison, J.P., Sharpe, A.H. and Blazar, B. R. (2004) B7 expression on T cells down-regulates immune responses through CTLA-4 Ligation via R-T Interactions. The Journal of Immunology, 172, 34-39.

[28]   Hatam, L.J., De Voti, J.A., Rosenthal, D.W., Lam, F., Abramson, A.L., Steinberg, B. and Bonagura, V.R. (2012) Immune suppression in premalignant respiratory papillomas: Enriched functional CD4Foxp3 regulatory T cells and PD-1/PD-L1/L2 expression. Clinical Cancer Research, 18, 1925-1935. doi:10.1158/1078-0432.CCR-11-2941

[29]   Carreno, B.M., Bennett, F., Chau, T.A., Ling, V., Luxenberg, D., Jussif, J., Lorea Baroja, M. and Madrenas, J. (2000) CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. The Journal of Immunology, 165, 1352- 1356.

[30]   Griffin, M.D., Hong, D.K., Holman, P.O., Lee, K.M., Whitters, M.J., O’Herrin, S.M., Fallarino, F., Collins, M., Segal, D.M., Gajewski, T.F., Kranz, D.M. and Bluestone, J.A. (2000) Blockade of T cell activation using a surface-linked single-chain antibody to CTLA-4 (CD152). Journal of Immunology, 164, 4433-4442.

[31]   Agata, Y., Kawasaki, A., Nishimura, H., Ishida, Y., Tsubata, T., Yagita, H. and Honjo, T. (1995) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology, 8, 765-772.

[32]   Feyler, S., Scott, G.B., Parrish, C., Jarmin, S., Evans, P., Short, M., McKinley, K., Selby P.J. and Cook, G. (2012) Tumour cell generation of inducible regulatory T-cells in multiple myeloma is contact-dependent and antigen-presenting cell-independent. PlosOne, 7, Article ID: e35981. doi:10.1371/journal.pone.0035981

[33]   Topfer, C., Kempe, S., Muller, N., Schmitz, M., Bachmann, M., Cartellieri, M., Schackert, G. and Temme, A. (2011) Tumor evasion from T cell surveillance. Journal of Biomedicine and Biotechnology 2011, Article ID: 918471. doi:10.1155/2011/918471

[34]   Hardy, B., Dotan, D. and Novogrodsky, A. (1989) A monoclonal antibody to human B lymphoblastoid cells activates human and murine T lymphocytes. Cell. Immunol, 118, 22-29. doi:10.1016/0008-8749(89)90354-7

[35]   Hardy, B., Yampolski, I., Kovjazin, R., Galli, M. and Novogrodsky, A. (1994) A monoclonal antibody against a human B lymphblastoid cell line induced tumor regression in mice. Cancer Research, 54, 5793-5796.

[36]   Hardy, B., Kovjazin, R., Raiter, A., Ganor, N. and Novogrodsky, A. (1997) A lymphocyte-Activating monoclonal antibody induces regression of human tumors in severe combined immunodeficient mice. Proceedings of the National Academy of Sciences of the United States of America, 94, 5756-5760. doi:10.1073/pnas.94.11.5756

[37]   Hardy, B., Indjiia, L., Rodionov, G., Raiter, A. and Inbal A. (2001) Treatment with BAT monoclonal antibody decreases tumor burden in a murine model of leukemia/ lymphoma. International Journal of Oncology, 19, 897- 902.

[38]   Hardy, B., Morgenstern, S., Raiter, A., Rodionov, G., Fadaeev, L. and Niv, Y. (2005) Immunotherapy of human colorectal hepatic metastases in mice by BAT mono- clonal antibody. Cancer Letters, 229, 217-222. doi:10.1016/j.canlet.2005.06.046

[39]   Feinmesser, M., Raiter, A. and Hardy B. (2006) Prevention of melanoma metastases in lungs of BAT treated and peptide immunized mice. International Journal of Oncology, 29, 911-917.

[40]   Raiter, A., Rodionov, G., Novogrodsky, A. and Hardy, B. (2000) CD4+ T lymphocytes as a primary cellular target for BAT monoclonal antibody stimulation. International Immunology, 12, 1623-1628. doi:10.1093/intimm/12.11.1623

[41]   Berger, R., Rotem-Yehudar, R., Slama, G., Landes, S, Kneller, A., Leiba, M., Koren-Michowitz, M., Shimoni, A. and Nagler, A. (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malign-nancies. Clinical Cancer Research, 14, 3044-3051. doi:10.1158/1078-0432.CCR-07-4079

[42]   Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., et al. (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366, 2443-2454. doi:10.1056/NEJMoa1200690

 
 
Top