OJMH  Vol.3 No.2 , April 2013
Implementing into GIS a Tool to Automate the Calculation of Physiographic Parameters of River Basins
Abstract: The physiographic characterization of a basin is a fundamental element as it defines the hydrological behavior of that basin. The present work deals with the development and implementation of a tool that allows calculating in an automated manner the physiographic parameters of a basin, as well as those of the surface runoff and main river, besides other graphic elements: hypsometric curve, equivalent rectangle and profile of the main river. Such a tool was developed under Visual Basic 6 programming language and the spatial geographic component ArcObjects by ESRI; they enabled the development of a library as a final product (.dll), which can be loaded and implemented in ArcMap software. In the methodology a Conceptual Model was established, from which it was possible to identify the requirements and methods to obtain the parameters, as well as the conception and implementation of the Logical Model that includes the specific functions and also the input structures, processes and data output. Finally, the tool was tested with actual data from El Caracol river basin, located in central-southern Mexico, which showed the easiness and usefulness of it, besides the effectiveness of the results, not leaving aside the time and resources saved by the user when characterizing a basin, compared with other conventional processes.
Cite this paper: R. Franco-Plata, C. Miranda-Vázquez, H. Solares-Hernández, L. Manzano-Solís, K. Bâ and J. Expósito-Castillo, "Implementing into GIS a Tool to Automate the Calculation of Physiographic Parameters of River Basins," Open Journal of Modern Hydrology, Vol. 3 No. 2, 2013, pp. 67-74. doi: 10.4236/ojmh.2013.32009.

[1]   R. Franco-Plata, “Concepción e Implementación de un Módulo Hidrogeomático Para la Evaluación de Disponibilidad de Recursos Hídricos,” Ph.D. Dissertation, Autonomous University of State of Mexico, Mexico City, 2008.

[2]   G. Rodríguez and A. Santos, “Diseno e Implementación de un Módulo Hidrogeomático Para la Estimación de Parámetros Fisiográficos de Cuencas Hidrográficas,” Undergraduate Dissertation, Autonomous University of State of Mexico, Mexico City, 2007.

[3]   F. L. Hellweger and D. R. Maidment, “HEC-PREPRO: A GIS Preprocessor for Lumped Parameter Hydrologic Modeling Programs,” Center for Research in Water Resources, The University of Texas, Austin, 1997.

[4]   C. Ehlschlaeger, “The GRASS/Mathematical link: Developing Hydrologic Models in Geographic Information Systems Interfaced with Computer Algebra Systems,” US Army Construction Engineering Research Lab, Champaign, 1991.

[5]   C. Díaz, K. M Ba, A. Iturbe, M. V. Esteller and F. Reyna, “Estimación de las Características de una Cuenca con la Ayuda de SIG y MEDT: Caso del Curso Alto del río Lerma, Estado de México,” Ciencia Ergo Sum, Vol. 6, No. 2, 1999, pp. 124-134.

[6]   D. Maidment, “ArcHydro-GIS for Water Resources,” ESRI Press, Redlands, 2002.

[7]   R. Franco-Plata, “Concepción de un Módulo Hidrogeo- mático Para el Análisis de Cuenca,” Toluca, Mexico, Unpublished, 2006.

[8]   A. Chebani, J. Llamas and C. Díaz-Delgado, “Estimation de la Cruedécenale par les Caractéristiques Physiographiques des Bassins,” Le Clima, Vol. 10, No. 2, 1992, pp. 24-37.

[9]   J. Llamas, “Hidrología General: Principios y Aplicaciones,” Servicio Editorial de la Universidad del País Vasco, Bilbao, 1993.

[10]   T. B. J. M. Ouarda, K. M. Ba, C. Díaz-Delgado, A. Carsteanu, K. Chokmani, H. Gingras, E. Quentin and E. Trujillo, “Intercomparasion of Regional Flood Frequency Estimation Methods at Ungauged Sites for Mexican Case Study,” Journal of Hydrology, Vol. 348, No. 1-2, 2008, pp. 40-58.

[11]   D. F. Campos-Aranda, “Contraste de un Método Simple de Transferencia de Información Para Estimación de Volúmenes Escurridos Mensuales,” Ingeniería Hidráulica en México, Juitepec, 2008.

[12]   T. Bernhardsen, “Geographic Information System, an Introduction”, Asplan Viak, Toronto, 1999.

[13]   J. Bosque, “Sistemas de Información Geográfica,” Ediciones Rialp S. A., Alcala, 1997.

[14]   P. A. Burrough, “Principles of Geographical Information Systems for Land Resources Assessment,” Clarendom, Oxford, 1986.

[15]   R. Candeau, “Regionalización Socioeconómica del Parque Nacional Nevado de Toluca y su Relación con el Deterioro Ambiental,” Ms. C. Dissertation, Autonomous University of State of Mexico, Mexico City, 2005.

[16]   M. N. DeMers, “Fundamentals of Geographic Information Systems,” John Wiley, Hoboken, 2002.

[17]   C. M. Farías de Reyes and J. Reyes, “Modelación de Lluvia Escorrentía Usando Sistemas de Información Geográfica (GIS) en Situaciones de Información Escasa,” Proceedings of the 7th National Congress of Civil Engineering—PUNO, Lima, 2001.

[18]   R. Franco-Plata, L. R. Manzano-Solís, M. A. Gómez-Albores, J. I. Juan-Pérez, N. B. Pineda-Jaimes and A. Martínez-Carrillo, “Using a GIS Tool to Map the Spatial Distribution of Population for 2010 in the State of Mexico, Mexico,” Journal of Geographic Information Systems, Vol. 4, No. 1, pp. 1-11.

[19]   N. B. Pineda, J. Bosque, M. Gómez, R. Franco, X. Antonio and L. R. Manzano, “Determination of Optimal Zones for Forest Plantations in the State of Mexico Using Multi-Criteria Spatial Analysis and GIS,” Journal of Geographic Information System, Vol. 4, No. 3, pp. 204-218.