OJOPM  Vol.3 No.2 , April 2013
Polyfluorene-Polytriarylamine Block Copolymer as an Additive for Electroluminescent Devices Based on Polymer Blends
Abstract: Electroluminescent characteristics were investigated for the blue emitting devices fabricated with the blend systems consisting of hole transporting polytriarylamine (PTAA), electron transporting polyfluorene (PF), and a block copolymer with both segments (PF-b-PTAA) as an active layer in order to elucidate the relationship between the chemical nature and morphology of the active layer, and EL performance. The addition of PF-b-PTAA to PF homopolymer afforded the hole injecting and/or electron blocking ability to increase the efficiency. The addition to PF/PTAA blend keeping the chemical composition constant also improved the performance by controlling the morphology and/or the domain size in phase-separated films.
Cite this paper: M. Jahanfar, Y. Tan, K. Tsuchiya, T. Shimomura and K. Ogino, "Polyfluorene-Polytriarylamine Block Copolymer as an Additive for Electroluminescent Devices Based on Polymer Blends," Open Journal of Organic Polymer Materials, Vol. 3 No. 2, 2013, pp. 41-45. doi: 10.4236/ojopm.2013.32007.

[1]   Y. Ohmori, M. Uchida, K. Muro and K. Yoshino, “Blue Electroluminescent Diodes Utilizing Poly (Alkylfluo rene),” Japanese Journal of Applied Physics, Vol. 30, No. 11B, 1991, pp. 1941-1943. doi:10.1143/JJAP.30.L1941

[2]   M. Leclerk, “Polyfluorenes: Twenty Years of Progress,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 39, No. 17, 2001, pp. 2867-2873. doi:10.1002/pola.1266

[3]   S. K. Lee, T. Ahn and N. S. Cho, “Synthesis of New Polyfluorene Copolymers with a Comonomer Containing Triphenylamine Units and Their Applications in White-Light-Emitting Diodes,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, No. 7, 2007, 45, pp. 1199-1209.

[4]   M. Redecker, D. D. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, “High Mobility Hole Transport Fluorene-Triarylamine Copolymers,” Advanced Materials, Vol. 11, No. 3, 1999, pp. 241-246. doi:10.1002/(SICI)1521-4095(199903)11:3<241::AID-ADMA241>3.0.CO;2-J

[5]   C. Ego, A. Grimsdale, F. Uckert, G. Yu, G. Srdanov and K. Müllen, “Triphenylamine-Substituted Polyfluorene— A Stable Blue-Emitter with Improved Charge Injection for Light-Emitting Diodes,” Advanced Materials, Vol. 14, No. 11, 2002, pp. 809-811. doi:10.1002/1521-4095(20020605)14:11<809::AID-ADMA809>3.0.CO;2-8

[6]   T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda and D. Neher, “Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping,” Advanced Materials, Vol. 13, No. 8, 2001, pp. 565-570. doi:10.1002/1521-4095(200104)13:8<565::AID-ADMA565>3.0.CO;2-W

[7]   H. T. Nicolai, A. Hof, J. L. M. Oosthoek and P. W. M. Blom, “Charge Transport and Recombination in Polyspirobifluorene Blue Light-Emitting Diodes,” Advanced Functional Materials, Vol. 21, No. 8, 2011, pp. 1505-1510. doi:10.1002/adfm.201002293

[8]   L. Duan, B. D. Chin, N. C. Yang, M.-H. Kim, H. D. Kim, S. T. Lee and H. K. Chung, “Multilayer Blue Polymer Light-Emitting Devices with Spin-Coated Interlayers,” Synthetic Metals, Vol. 157, No. 8-9, 2007, pp. 343-346. doi:10.1016/j.synthmet.2007.03.011

[9]   Y. Tan, Z. Gu, K. Tsuchiya and K. Ogino, “Synthesis and Luminescent Properties of Block Copolymers Based on Polyfluorene and Polytriphenylamine,” Polymer, Vol. 53, No. 7, 2012, pp. 1444-1452.

[10]   Y. Tan, K. Tsuchiya and K. Ogino, “Synthesis of Polyfluorene Block Copolymers and Effect of Side Chain Group on Electroluminescent Device Performance,” Chemistry Letters, Vol. 41, No. 3, 2012, pp. 257-259. doi:10.1246/cl.2012.257

[11]   C. Park, J. Yoon and E. L. Thomas, “Enabling Nano-technology with Self Assembled Block Copolymer Patterns,” Polymer, Vol. 44, No. 22, 2003, pp. 6725-6760. doi:10.1016/j.polymer.2003.08.011

[12]   L. Deng, P. T. Furuta, S. Garon, J. Li, D. Kavulak, M. E. Thompson and J. M. J. Fréchet, “Living Radical Polymerization of Bipolar Transport Materials for Highly Efficient Light Emitting Diodes,” Chemistry of Materials, Vol. 18, No. 2, 2006, pp. 386-395. doi:10.1021/cm051922+

[13]   B. Ma, B. J. Kim, L. Deng, D. A. Poulsen, M. E. Thompson and J. M. J. Fréchet, “Bipolar Copolymers as Host for Electroluminescent Devices:Effects of Molecular Structure on Film Morphology and Device Performance,” Macromolecules, Vol. 40, No. 23, 2007, pp. 8156-8161. doi:10.1021/ma0715526

[14]   K. Tsuchiya, K. Sakaguchi, H. Kasuga, A. Kawakami, H. Taka, H. Kita and K. Ogino, “Synthesis of Charge Transporting Block Copolymers Containing 2,7-Dimethoxycarbazole Units for Light Emitting Device,” Polymer, Vol. 50, No. 3, 2010, pp. 616-622. doi:10.1016/j.polymer.2009.12.024

[15]   K. Tsuchiya, H. Kasuga, A. Kawakami, H. Taka, H. Kita and K. Ogino, “Synthesis of Bipolar Charge Transporting Block Copolymers and Characterization for Organic Light-Emitting Diode,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 48, No. 7, 2010, pp. 1461-1468. doi:10.1002/pola.23853

[16]   K. Tsuchiya, K. Sakaguchi, A. Kawakami, H. Taka, H. Kita, T. Shimomura and K. Ogino, “Charge Transporting Block Copolymer for Morphological Control in Light Emitting Device Based on Polymer Blends,” Synthetic Metals, Vol. 160, No. 15-16, 2010, pp. 1679-1682. doi:10.1016/j.synthmet.2010.05.040

[17]   D. J. Kinning, E. L. Thomas and L. J. Fetters, “Morphological Studies of Micelle Formation in Block Copolymer/Homopolymer Blends,” Journal of Chemical Physics, Vol. 90, No. 10, 1989, pp. 5806-5825. doi:10.1063/1.456388

[18]   C. Koning, M. V. Duin, C. Pagnoulle and R. Jerome, “Strategies for Compatibilization of Polymer Blends,” Progress in Polymer Science, Vol. 23, No. 4, 1998, pp. 707-757. doi:10.1016/S0079-6700(97)00054-3

[19]   J. A. Gallowaya, H. K. Jeonb, J. R. Bell and C. W. Macosko, “Block Copolymer Compatibilization of Cocontinuous Polymer Blends,” Polymer, Vol. 46, No. 1, 2005, pp. 183-181. doi:10.1016/j.polymer.2004.10.061