OJDM  Vol.3 No.2 , April 2013
Inverse Problems on Cirtical Number in Finite Groups
ABSTRACT

Let G be a finite nilpotent group of odd order and S be a subset of G\{0}. We say that S is complete if every element of G can be represented as a sum of different elements of S and incomplete otherwise. In this paper, we obtain the characterization of large incomplete sets.


Cite this paper
Q. Wang and J. Zhuang, "Inverse Problems on Cirtical Number in Finite Groups," Open Journal of Discrete Mathematics, Vol. 3 No. 2, 2013, pp. 93-96. doi: 10.4236/ojdm.2013.32018.
References
[1]   P. Erdõs and H. Heibronn, “On the Addition of Residue Classes Mod p,” Acta Arithmetica, Vol. 9, 1964, pp. 149- 159.

[2]   J. A. Dias da Silva and Y. O. Hamidoune, “Cyclic Spaces for Grassmann Derivatives and Additive Theory,” Bulletin London Mathematical Society, Vol. 26, No. 2, 1994, pp. 140-146. doi:10.1112/blms/26.2.140

[3]   G. T. Diderrich, “An Addition Theorem for Abelian Groups of Order pq,” Journal of Number Theory, Vol. 7, No. 1, 1975, pp. 33-48. doi:10.1016/0022-314X(75)90006-2

[4]   J. E. Olson, “An Addition Theorem Mod p,” Journal of Combinatorial Theory, Vol. 5, No. 1, 1968, pp. 45-52. doi:10.1016/S0021-9800(68)80027-4

[5]   W. Gao and Y. O. Hamidoune, “On Additive Bases,” Acta Arithmetica, Vol. 88, 1999, pp. 233-237.

[6]   H. B. Mann and Y. F. Wou, “An Addition Theorem for the Elementary Abelian Group of Type (p,p),” Monatshefte für Mathematik, Vol. 102, No. 4, 1986, pp. 273-308. doi:10.1007/BF01304301

[7]   M. Freeze, W. D. Gao and A. Geroldinger, “The Critical Number of Finite Abelian Groups,” Journal of Number Theory, Vol. 129, No. 11, 2009, pp. 2766-2777. doi:10.1016/j.jnt.2009.05.016

[8]   Q. H. Wang and J. J. Zhuang, “On the Critical Number of Finite Groups of Order pq,” International Journal of Number Theory, Vol. 8, No. 5, 2012, pp. 1271-1280. doi:10.1142/S1793042112500741

[9]   J. R. Griggs, “Spanning Subset Sums for Finite Abelian Groups,” Discrete Mathematics, Vol. 229, No. 1-3, 2001, pp. 89-99. doi:10.1016/S0012-365X(00)00203-X

[10]   Q. H. Wang and Y. K. Qu, “On the Critical Number of Finite Groups (II),” Ars Combinatoria, Accepted for Publication in December 2009, to Appear.

[11]   W. Gao, Y. O. Hamidoune, A. Llad and O. Serra, “Covering a Finite Abelian Group by Subset Sums,” Combinatorica, Vol. 23, No. 4, 2003, pp. 599-611. doi:10.1007/s00493-003-0036-x

[12]   V. H. Vu, “Structure of Large Incomplete Sets in Finite Abelian Groups,” Combinatorica, Vol. 30, No. 2, 2010, pp. 225-237. doi:10.1007/s00493-010-2336-2

[13]   D. Guo, Y. K. Qu, G. Q. Wang and Q. H. Wang, “Extremal Incomplete Sets in Finite Abelian Groups,” Ars Combinatoria, Accepted for Publication in December 2011, to Appear.

[14]   H. B. Mann, “Addition Theorems,” 2nd Edition, R. E. Krieger, New York, 1976.

[15]   J. E. Olson, “Sum of Sets of Group Elements,” Acta Arithmetica, Vol. 28, No. 76, 1975, pp. 147-156.

[16]   Y. O. Hamidoune, “Adding Distinct Congruence Classes,” Combinatorics, Probability and Computing, Vol. 7, No. 1, 1998, pp. 81-87. doi:10.1017/S0963548397003180

 
 
Top