Back
 JTTs  Vol.3 No.2 , April 2013
Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand
Abstract: In the transportation industry, companies position rolling stock where it is likely to be needed in the face of a pronounced weekly cyclical demand pattern in orders. Strategic policies based on assumptions of repetition of cyclical weekly patterns set rolling stock targets; during tactical execution, a myriad dynamic influences cause deviations from strategically set targets. We find that optimal strategic plans do not agree with results of tactical modeling; strategic results are in fact suboptimal in many tactical situations. We discuss managerial implications of this finding and how the two modeling paradigms can be reconciled.
Cite this paper: M. Gorman, "Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand," Journal of Transportation Technologies, Vol. 3 No. 2, 2013, pp. 162-173. doi: 10.4236/jtts.2013.32016.
References

[1]   J. Roy and T. Crainic, “Improving Intercity Freight Routing with a Tactical Planning Model,” Interfaces, Vol. 22, No. 3, 1992, pp. 31-44. doi:10.1287/inte.22.3.31

[2]   J. Cordeau, P. Toth and D. Vigo, “A Survey of Optimization Models for Train Routing and Scheduling,” Transportation Science, Vol. 32, No. 4, 1998, pp. 380-404. doi:10.1287/trsc.32.4.380

[3]   D. Huisman, L. Kroon, R. Lentink and M. Vromans, “Operations Research in Passenger Railway Transportation,” Statistica Neerlandica, Vol. 59, No. 4, 2005, pp. 467-497. doi:10.1111/j.1467-9574.2005.00303.x

[4]   M. F. Gorman, D. Sellers and D. Acharya, “CSX Railway Cashes in on Optimization of Empty Equipment Distribution,” Interfaces, Vol. 40, No. 1, 2010, pp. 5-16. doi:10.1287/inte.1090.0465

[5]   M. F. Gorman, K. Crook and D. Sellers, “North American Freight Rail Industry Real-Time Optimized Equipment Distribution Systems: State of the Practice,” Transportation Research Part C, Vol. 19, 2011, pp. 103-114. doi:10.1016/j.trc.2010.03.012

[6]   W. B. Powell and T. A. Carvalho, “Real-Time Optimization of Containers and Flatcars for Intermodal Operations,” Transportation Science, Vol. 32, 1998, pp. 110-126.

[7]   H. Sherali, E. Bish and Z. Xiaomei, “Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment,” Transportation Science, Vol. 39, No. 3, 2005, pp. 349-366. doi:10.1287/trsc.1040.0090

[8]   R. K. Ahuja, J. Liu, J. B. Orlin, D. Sharma and L. A. Shughart, “Solving Real-Life Locomotive-Scheduling Problems,” Transportation Science, Vol. 39, No. 4, 2005, pp. 503-517. doi:10.1287/trsc.1050.0115

[9]   M. Lübbecke and U. Zimmermann, “Engine Routing and Scheduling at Industrial In-Plant Railroads,” Transportation Science, Vol. 37, No. 2, 2003, pp. 183-197. doi:10.1287/trsc.37.2.183.15251

[10]   Y. Ileri, M. Bazaraa, T. Gifford, G. Nemhauser, J. Sokol, and E. Wikum, “An Optimization Approach for Planning Daily Drayage Operations,” Central European Journal of Operations Research, Vol. 14, No. 2, 2006, pp. 141-156. doi:10.1007/s10100-006-0165-6

[11]   A. Erera, B. Karac1k and M. Savelsbergh, “A Dynamic Driver Management Scheme for Less-than-Truckload Carriers,” Computers& Operations Research, Vol. 35, No. 11, 2008, pp. 3397-3411. doi:10.1016/j.cor.2007.01.019

[12]   B. Vaidyanathan, K. Jha and R. Ahuja, “Multicommodity Network Flow Approach to the Railroad Crew-Scheduling Problem,” IBM Journal of Research & Development, Vol. 51, No. 3-4, 2007, pp. 325-344. doi:10.1147/rd.513.0325

[13]   M. F. Gorman, “Intermodal Pricing Model Creates a Network Pricing Perspective at BNSF,” Interfaces, Vol. 31, No. 4, 2001, pp. 37-49.

[14]   D. Adelman, “Price-Directed Control of a Closed Logistics Queueing Network,” Operations Research, Vol. 55, No. 6, 2007, pp. 1022-1038. doi:10.1287/opre.1070.0408

[15]   M. F. Gorman, “Hub Group Implements a Suite of OR Tools to Improve Operations,” Interfaces, Vol. 40, No. 5, 2010, pp. 368-384. doi:10.1287/inte.1100.0507

[16]   A. Schaefer, E. Johnson, A. Kleywegt and G. Nemhauser, “Airline Crew Scheduling Under Uncertainty,” Transportation Science, Vol. 39, No. 3, 2005, pp. 340-348. doi:10.1287/trsc.1040.0091

[17]   A. Jarrah, J. Goodstein and R. Narasimhan, “An Efficient Airline Re-Fleeting Model for the Incremental Modification of Planned Fleet Assignments,” Transportation Science, Vol. 34, No. 4, 2000, pp. 349-363. doi:10.1287/trsc.34.4.349.12324

[18]   R. E. Hughes and W. B. Powell, “Mitigating End Effects in the Dynamic Vehicle Allocation Model,” Management Science, Vol. 34, No. 7, 1988, pp. 859-879. doi:10.1287/mnsc.34.7.859

 
 
Top