JTTs  Vol.3 No.2 , April 2013
Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand
In the transportation industry, companies position rolling stock where it is likely to be needed in the face of a pronounced weekly cyclical demand pattern in orders. Strategic policies based on assumptions of repetition of cyclical weekly patterns set rolling stock targets; during tactical execution, a myriad dynamic influences cause deviations from strategically set targets. We find that optimal strategic plans do not agree with results of tactical modeling; strategic results are in fact suboptimal in many tactical situations. We discuss managerial implications of this finding and how the two modeling paradigms can be reconciled.

Cite this paper
M. Gorman, "Integrating Strategic and Tactical Rolling Stock Models with Cyclical Demand," Journal of Transportation Technologies, Vol. 3 No. 2, 2013, pp. 162-173. doi: 10.4236/jtts.2013.32016.

[1]   J. Roy and T. Crainic, “Improving Intercity Freight Routing with a Tactical Planning Model,” Interfaces, Vol. 22, No. 3, 1992, pp. 31-44. doi:10.1287/inte.22.3.31

[2]   J. Cordeau, P. Toth and D. Vigo, “A Survey of Optimization Models for Train Routing and Scheduling,” Transportation Science, Vol. 32, No. 4, 1998, pp. 380-404. doi:10.1287/trsc.32.4.380

[3]   D. Huisman, L. Kroon, R. Lentink and M. Vromans, “Operations Research in Passenger Railway Transportation,” Statistica Neerlandica, Vol. 59, No. 4, 2005, pp. 467-497. doi:10.1111/j.1467-9574.2005.00303.x

[4]   M. F. Gorman, D. Sellers and D. Acharya, “CSX Railway Cashes in on Optimization of Empty Equipment Distribution,” Interfaces, Vol. 40, No. 1, 2010, pp. 5-16. doi:10.1287/inte.1090.0465

[5]   M. F. Gorman, K. Crook and D. Sellers, “North American Freight Rail Industry Real-Time Optimized Equipment Distribution Systems: State of the Practice,” Transportation Research Part C, Vol. 19, 2011, pp. 103-114. doi:10.1016/j.trc.2010.03.012

[6]   W. B. Powell and T. A. Carvalho, “Real-Time Optimization of Containers and Flatcars for Intermodal Operations,” Transportation Science, Vol. 32, 1998, pp. 110-126.

[7]   H. Sherali, E. Bish and Z. Xiaomei, “Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment,” Transportation Science, Vol. 39, No. 3, 2005, pp. 349-366. doi:10.1287/trsc.1040.0090

[8]   R. K. Ahuja, J. Liu, J. B. Orlin, D. Sharma and L. A. Shughart, “Solving Real-Life Locomotive-Scheduling Problems,” Transportation Science, Vol. 39, No. 4, 2005, pp. 503-517. doi:10.1287/trsc.1050.0115

[9]   M. Lübbecke and U. Zimmermann, “Engine Routing and Scheduling at Industrial In-Plant Railroads,” Transportation Science, Vol. 37, No. 2, 2003, pp. 183-197. doi:10.1287/trsc.

[10]   Y. Ileri, M. Bazaraa, T. Gifford, G. Nemhauser, J. Sokol, and E. Wikum, “An Optimization Approach for Planning Daily Drayage Operations,” Central European Journal of Operations Research, Vol. 14, No. 2, 2006, pp. 141-156. doi:10.1007/s10100-006-0165-6

[11]   A. Erera, B. Karac1k and M. Savelsbergh, “A Dynamic Driver Management Scheme for Less-than-Truckload Carriers,” Computers& Operations Research, Vol. 35, No. 11, 2008, pp. 3397-3411. doi:10.1016/j.cor.2007.01.019

[12]   B. Vaidyanathan, K. Jha and R. Ahuja, “Multicommodity Network Flow Approach to the Railroad Crew-Scheduling Problem,” IBM Journal of Research & Development, Vol. 51, No. 3-4, 2007, pp. 325-344. doi:10.1147/rd.513.0325

[13]   M. F. Gorman, “Intermodal Pricing Model Creates a Network Pricing Perspective at BNSF,” Interfaces, Vol. 31, No. 4, 2001, pp. 37-49.

[14]   D. Adelman, “Price-Directed Control of a Closed Logistics Queueing Network,” Operations Research, Vol. 55, No. 6, 2007, pp. 1022-1038. doi:10.1287/opre.1070.0408

[15]   M. F. Gorman, “Hub Group Implements a Suite of OR Tools to Improve Operations,” Interfaces, Vol. 40, No. 5, 2010, pp. 368-384. doi:10.1287/inte.1100.0507

[16]   A. Schaefer, E. Johnson, A. Kleywegt and G. Nemhauser, “Airline Crew Scheduling Under Uncertainty,” Transportation Science, Vol. 39, No. 3, 2005, pp. 340-348. doi:10.1287/trsc.1040.0091

[17]   A. Jarrah, J. Goodstein and R. Narasimhan, “An Efficient Airline Re-Fleeting Model for the Incremental Modification of Planned Fleet Assignments,” Transportation Science, Vol. 34, No. 4, 2000, pp. 349-363. doi:10.1287/trsc.34.4.349.12324

[18]   R. E. Hughes and W. B. Powell, “Mitigating End Effects in the Dynamic Vehicle Allocation Model,” Management Science, Vol. 34, No. 7, 1988, pp. 859-879. doi:10.1287/mnsc.34.7.859