On the Incompressible Navier-Stokes Equations with Damping

Show more

References

[1] C. Foias and R. Teman, “Attractor Representing Tulent Flows,” Memoirs of Applied Mathematical Sciences, Vol. 53, No. 314, 1985.

[2] C. Foias and R. Teman, “On the Dimension of the Attractors in Two-Demensional Turbulence,” Physica D, Vol. 30, No. 3, 1988, pp. 284-296.
doi:10.1016/0167-2789(88)90022-X

[3] C. Foias and R. Teman, “On the Large-Time Galerkin Approximation of the Navier-Stokes Equations,” SIAM Journal on Numerical Analysis, Vol. 21, No. 4, 1984, pp. 615-634. doi:10.1137/0721043

[4] J. E. Marsden, L. Sirovich and F. John, “Infinite-Dimensional Dynamical Systems in Mechanics and Physics,” Applied Mathematical Sciences, Vol. 68, 1997, Springer Verlag, New York, pp. 15-25.

[5] F. Abergel, “Attractor for a Navier-Stokes Flow in Unbounded Domain,” Mathematical Modelling and Numerical Analysis, Vol. 23, No. 3, 1989, pp. 359-370.

[6] C. S. Zhao and K. T. Li, “The Global Attractor of N-S Equation with Linear Dampness on the Whole Two Dimensional Space and Estimates of Its Demensions,” ACTA Mathematical Application Sinica, Vol. 23, No. 1, 2000, pp. 90-96.

[7] A. V. Babin and M. I. Vishik, “Maximal Attractors of Semigroups Corresponding to Evolution Differential Equations,” Mathematics of the USSR-Sbornik, Vol. 54, No. 2, 1986, pp. 387-408.
doi:10.1070/SM1986v054n02ABEH002976

[8] F. Abergel, “Existence and Finite Dimensionality of Global Attractor for Evolution Equations on Unbounded Domains,” Journal of Differential Equations, Vol. 83, No. 1, 1990, pp. 85-108. doi:10.1016/0022-0396(90)90070-6

[9] R. S. Adms, “Sobolve Space,” Academic Press, New York, 1975.

[10] A. Pazy, “Semigroups of Linear Operator and Application to Partial Differential Equation,” Applied Mathematical Sciences, Springer-Verlag, New York, 2006, pp. 1-38.