Some One Parameter Models for Continuous Random Variables Defined on the Interval [0, 1]

Show more

References

[1] S. Kotz and J. R. van Dorp, “Beyond Beta, Other Continuous Families of Distributions with Bounded Support and Applications,” World Scientific Publishing Co., Singapore City, 2004.

[2] A. O’Hagan, C. Buck, A. Daneshkhah, J. Eiser, P. Garth waite, D. Jenkinson, J. Oakley and T. Rakow, “Uncertain Judgements, Eliciting Experts’ Probabilities,” John Wiley and Sons, Ltd., Chichester, 2006.
doi:10.1002/0470033312

[3] W. Donaldson, “The Estimation of the Mean and Variance of a PERT Activity Time,” Operations Research, Vol. 13, No. 3, 1965, pp. 382-385.
doi:10.1287/opre.13.3.382

[4] D. Johnson, “The Triangular Distribution as a Proxy for the Beta Distribution in Risk Analysis,” The Statistician, Vol. 46, No. 3, 1997, pp. 387-398.
doi:10.1111/1467-9884.00091

[5] A. Lau, H. Lau and Y. Zhang, “A Simple and Logical Alternative for Making PERT Time Estimates,” IIE Transactions, Vol. 28, No. 3, 1996, pp. 183-192.
doi:10.1080/07408179608966265

[6] H. Lau, A. Lau and C. Ho, “Improved Moment-Estimation Formulas Using More than Three Subjective Fractiles,” Management Science, Vol. 44, No. 3, 1998, pp. 346-351. doi:10.1287/mnsc.44.3.346

[7] S. Mohan, M. Gopalakrishnan, H. Balasubramanian and A. Chandrashekar, “A Lognormal Approximation of Activity Duration in PERT Using Two Time Estimates,” Journal of the Operational Research Society, Vol. 58, No. 6, 2007, pp. 827-831. doi:10.1057/palgrave.jors.2602204

[8] I. J. Premachandra, “An Approximation of the Activity Duration Distribution in PERT,” Computers and Operations Research, Vol. 28, No. 5, 2001, pp. 443-452.
doi:10.1016/S0305-0548(99)00129-X

[9] W. Fazar, “Program Evaluation and Review Technique,” The American Statistician, Vol. 13, No. 1, 1959, p. 10.

[10] M. Trout, “On the Generality of the PERT Average Time Formula,” Decisions Sciences, Vol. 20, No. 2, 1989, pp. 410-412. doi:10.1111/j.1540-5915.1989.tb01888.x

[11] A. Davison, “Statistical Models,” Cambridge University Press, London, 2003. doi:10.1017/CBO9780511815850

[12] A. Edwards, “Gilbert’s Sine Distribution,” Teaching Statistics, Vol. 22, No. 3, 2000, pp. 70-71.
doi:10.1111/1467-9639.00026

[13] J. Proakis, “Digital Communications,” 3rd Edition, McGraw Hill, Inc., New York, 1995.

[14] I. Burr, “Cumulative Frequency Functions,” Annals of Mathematical Statistics, Vol. 13, No. 2, 1942, pp. 215-232. doi:10.1214/aoms/1177731607

[15] S. Kotz and N. Johnson, “Encyclopedia of Statistical Sciences,” John Wiley and Sons, Inc., New York, 1982.

[16] J. Berny, “A New Distribution Function for Risk Analysis,” Journal of the Operational Research Society, Vol. 40, No. 2, 1989, pp. 1121-1127.

[17] C. W. Topp and F. C. Leone, “A Family of J-Shaped Distributions,” Journal of the American Statistical Association, Vol. 50, No. 269, 1955, pp. 209-219.
doi:10.1080/01621459.1955.10501259

[18] N. Johnson, S. Kotz and N. Balakrishnan, “Continuous Univariate Distributions,” Vol. 2, 2nd Edition, John Wiley and Sons, Inc., New York, 1995.

[19] N. Johnson, S. Kotz and N. Balakrishnan, “Continuous Univariate Distributions,” Vol. 1, 2nd Edition, John Wiley and Sons, Inc. New York, 1994.