JMP  Vol.4 No.4 , April 2013
Postclassical Turbulence Mechanics
Author(s) Jaak Heinloo*

This paper surveys the formalism and applications of the postclassical turbulence mechanics (PCTM) grounded on the characterization of turbulent flow field in infinitesimal surroundings of the flow field points besides the flow velocity at these points also by the curvature of the velocity fluctuation streamlines passing these points. The PCTM applies this step to found the turbulence split into the orientated and the non-orientated constituents. The split specifies the competence of the classical turbulence mechanics (CTM) to the description of the non-orientated turbulence constituent and delegates the description of the orientated turbulence constituent (in the spirit of the theory of micropolar fluids) to the equation of moment-of-momentum. The concurrent presence of the orientated (relatively large scale) and the non-orientated (relatively small scale) turbulence constituents enables to compile the CTM and the conception of L. F. Richardson and A. N. Kolmogorov about the cascading turbulence (RK conception) within a conjoint formalism. The compilation solves the classical conflict between the CTM and the RK conception, though evinces a conflict of another type characterized as paradigmatic.

Cite this paper
J. Heinloo, "Postclassical Turbulence Mechanics," Journal of Modern Physics, Vol. 4 No. 4, 2013, pp. 505-516. doi: 10.4236/jmp.2013.44072.
[1]   L. F. Richardson, “Weather Prediction by Numerical Process,” Cambridge University Press, Cambridge, 1922.

[2]   A. N. Kolmogorov, “The Local Structure of Turbulence in Incompressible Viscous Fluids for Very Large Reynolds Numbers,” Doklady Akademii Nauk SSSR, Vol. 30, 1941, pp. 376-387 (in Russian).

[3]   A. C. Eringen, “Microcontinuum Field Theories II. Fluent Media,” Krieger Pub. Co., Malabar, 1980.

[4]   J. S. Dahler and L. F. Scriven, “Angular Momentum of Continua,” Nature, Vol. 192, No. 4797, 1961, pp. 36-37. doi:10.1038/192036a0

[5]   J. S. Dahler, “Transport Phenomena in a Fluid Composed of Diatomic Molecules,” Journal of Chemical Physics, Vol. 30, No. 6, 1959, pp. 1447-1475. doi:10.1063/1.1730220

[6]   A. C. Eringen, “Theory of Micropolar Fluids,” Journal of Mathematics and Mechanics, Vol. 16, No. 1, 1966, pp. 1-18.

[7]   T. Ariman, M. A. Turk and D. O. Silvester, “Microcontinuum Fluid Mechanics—A Review,” International Journal of Engineering Science, Vol. 11, No. 8, 1973, pp. 905-930. doi:10.1016/0020-7225(73)90038-4

[8]   A. C. Eringen and T. S. Chang, “Micropolar Description of Hydrodynamic Turbulence,” Advances in Materials Science and Engineering, Vol. 5, No. 1, 1970, pp. 1-8.

[9]   A. C. Eringen, “Micromorphic Description of Turbulent Channel Flow,” Journal of Mathematical Analysis and Applications, Vol. 39, No. 1, 1972, pp. 253-266. doi:10.1016/0022-247X(72)90239-9

[10]   J. Peddieson, “An Application of the Micropolar Fluid Model to Calculation of Turbulent Shear Flow,” International Journal of Engineering Science, Vol. 10, No. 1, 1972, pp. 23-32. doi:10.1016/0020-7225(72)90072-9

[11]   V. N. Nikolajevskii, “Asymmetric Mechanics and the Theory of Turbulence,” Archiwum Mechaniki Stosowanej, Vol. 24, 1972, pp. 43-51.

[12]   V. N. Nikolajevskiy, “Angular Momentum in Geophysical Turbulence: Continuum Spatial Averaging Method,” Kluwer, Dordrecht, 2003.

[13]   L. D. Landau and E. M. Lifshitz, “Statistical Physics,” Pergamon Press, Oxford, 1980.

[14]   A. Ishiara, “Statistical Physics,” Academic Press, New York-London, 1971.

[15]   J. Heinloo, “Phenomenological Mechanics of Turbulent Flows,” Valgus, Tallinn, 1984 (in Russian).

[16]   J. Heinloo, “Turbulence Mechanics,” Estonian Academy of Sciences, Tallinn, 1999 (in Russian).

[17]   J. Heinloo, “On Description of Stochastic Systems,” Proceedings of the Estonian Academy of Sciences, Physics and Mathematics, Vol. 53, No. 3, 2004, pp. 186-200.

[18]   J. Heinloo, “A Setup of Systemic Description of Fluids Motion,” Proceedings of the Estonian Academy of Sciences, Vol. 58, No. 3, 2009, pp. 184-189. doi:10.3176/proc.2009.3.05

[19]   J. Heinloo, “The Structure of Average Turbulent Flow Field,” Central European Journal of Physics, Vol. 8. No. 1, 2010, pp. 17-24. doi:10.2478/s11534-009-0015-y

[20]   J. Heinloo, “Setup of Turbulence Mechanics Accounted for a Preferred Orientation of Eddy Rotation,” Concepts of Physics, Vol. 5, No. 2, 2008, pp. 205-219. doi:10.2478/v10005-007-0033-8

[21]   J. Heinloo, “A Generalized Setup of the Turbulence Description,” Advanced Studies in Theoretical Physics, Vol. 5, No. 10, 2011, pp. 477-483.

[22]   J. Heinloo, “Physical Doctrine of Turbulence—A Review,” International Journal of Research and Reviews in Applied Sciences, Vol. 12, No. 2, 2012, pp. 214-221.

[23]   J. Heinloo, “Formulation of Turbulence Mechanics,” Physical Review E, Vol. 69, No. 5, 2004, Article ID: 056317. doi:10.1103/PhysRevE.69.056317

[24]   L. I. Sedov, “A Course in Continuum Mechanics,” Wolters-Noordhoff, Groningen, 1971.

[25]   V. P. Starr, “Physics of Negative Viscosity Phenomena,” McGraw-Hill, New York, 1968.

[26]   J. Heinloo, “The Description of Externally Influenced Turbulence Accounting for a Preferred Orientation of Eddy Rotation,” European Physical Journal B, Vol. 62, No. 4, 2008, pp. 471-476. doi:10.1140/epjb/e2008-00187-8

[27]   J. Pedlosky, “Geophysical Fluid Dynamics,” Springer, New York, 1987.

[28]   J. Heinloo and A. Toompuu, “A Model of Average Velocity in Oscillating Turbulent Boundary Layers,” Journal of Hydraulic Research, Vol. 45, No. 5, 2009, pp. 676-680. doi:10.3826/jhr.2009.3579

[29]   J. Nikuradse, “Gesetzmassigkeiten der Turbulenten Stromung in Glatten Rohren,” VDI-Forschungsheft No 356, 1932, pp. 1-36.

[30]   G. Comte-Bellot and A. Craya, “écoulement Turbulent entre Deux Parois Parallèles,” Fiche Détaillée, Paris, 1965.

[31]   V. N. Zmeikov and B. P. Ustremenko, “Study of Energetic and Heat Transfer in Round Channel with Inner Rotating Cylinder,” Problems of Thermoenergetics and Applied Thermophysics-1, Academy of Science of Kazakhstan SSR, 1964, p. 153 (in Russian).

[32]   V. I. Bukreejev and V. M. Shakhin, “Experimental Study of Unsteady Turbulent Flow in Round Tube,” Aeromehanika, Nauka, Moscow, 1976, p. 180 (in Russian).

[33]   I. G. Jonsson and N. A. Carlsen, “Experimental and Theoretical Investigations in an Oscillatory Turbulent Boundary Layer,” Journal of Hydraulic Research, Vol. 14, No. 1, 1976, pp. 45-60. doi:10.1080/00221687609499687

[34]   G. G. Branover and A. B. Tsinober, “Magnetic Hydromechanics of Incompressible Fluids,” Nauka, Moscow, 1970 (in Russian).

[35]   J. Heinloo and A. Toompuu, “A Model of Vertical Distribution of Suspended Matter in an Open Channel Flow,” Environmental Fluid Mechanics, Vol. 11, No. 3, 2011, pp. 319-328. doi:10.1007/s10652-010-9180-1

[36]   J. Jiang and A. J. Mehta, “Lutocline Behavior in High-Concentration Estuary,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, No. 6, 2000, pp. 324-328. doi:10.1061/(ASCE)0733-950X(2000)126:6(324)

[37]   J. Heinloo and A. Toompuu, “A Model of the Vertical Distribution of Suspended Sediments in the Bottom Layer of Natural Water Body,” Estonian Journal of Earth Sciences, Vol. 59, No. 3, 2010, pp. 238-245. doi:10.3176/earth.2010.3.05

[38]   J. Heinloo and A. Toompuu, “A Modified Ekman Layer Model,” Estonian Journal of Earth Sciences, Vol. 60, No. 2, 2011, pp. 123-129. doi:10.3176/earth.2011.2.06

[39]   J. Heinloo and A. Toompuu, “A Modification of the Classical Ekman Model Accounting for the Stokes Drift and Stratification Effects,” Environmental Fluid Mechanics, Vol. 12, No. 2, 2011, pp. 101-113. doi:10.1007/s10652-011-9212-5

[40]   O. M. Phillips, “Dynamics of Upper Ocean,” Cambridge University Press, Cambridge, 1977.

[41]   Y.-D. Lenn and T. K. Chereskin, “Observations of Ekman Currents in the Southern Ocean,” Journal of Physical Oceanography, Vol. 39, No. 3, 2009, pp. 768-779. doi:10.1175/2008JPO3943.1

[42]   R. R. Schudlich and J. F. Price, “Observations of Seasonal Variation in the Ekman Layer,” Journal of Physical Oceanography, Vol. 28, No. 6, 1998, pp. 1187-1204. doi:10.1175/1520-0485(1998)028<1187:OOSVIT>2.0.CO;2

[43]   J. Heinloo and ü. Vosumaa, “Rotationally Anisotropic Turbulence in the Sea,” Annales Geophysicae, Vol. 10, 1992, pp. 708-715.

[44]   ü. Vosumaa and J. Heinloo, “Evolution Model of the Vertical Structure of the Active Layer of the Sea,” Journal of Geophysical Research, Vol. 101, No. 11, 1996, pp. 25635-25646. doi:10.1029/96JC01988

[45]   J. Heinloo and A. Toompuu, “Antarctic Circumpolar Current as a Density-Driven Flow,” Proceedings of the Estonian Academy of Sciences, Physics and Mathematics, Vol. 53, No. 4, 2004, pp. 252-265. doi:10.1029/96JC01988

[46]   J. Heinloo and A. Toompuu, “Modeling a Turbulence Effect in Formation of the Antarctic Circumpolar Current,” Annales Geophysicae, Vol. 24, No. 12, 2006, pp. 3191- 3196.

[47]   T. Whitworth, W. D. Nowlin Jr. and S. J. Worley, “The Net Transport of the Antarctic Circumpolar Current Trough Drake Passage,” Journal of Physical Oceanography, Vol. 12, No. 9, 1982, pp. 960-971. doi:10.1175/1520-0485(1982)012<0960:TNTOTA>2.0.CO;2

[48]   J. Heinloo and A. Toompuu, “Modeling of Turbulence Effect in Formation of Zonal Winds,” The Open Atmospheric Science Journal, Vol. 2, 2008, pp. 249-255.

[49]   A. H. Oort, “Global Atmospheric Circulation Statistics, 1958-1973,” NOAA Professional Paper 14, Rockville, 1983

[50]   J. Heinloo and A. Toompuu, “Gyration Effect of the Large-Scale Turbulence in the Upper Ocean,” Environmental Fluid Mechanics, Vol. 12, No. 5, 2012, pp. 429- 438. doi:10.1007/s10652-012-9247-2

[51]   A. Toompuu and J. Heinloo, “Gyration Effect Estimated from Global Surface Drifter Data in the Pacific Ocean,” IEEE/OES Baltic International Symposium, Klaipeda, 8-10 May 2012, pp. 1-4.

[52]   A. L. Sybrandy and P. P. Niiler, “WOCE/TOGA Lagrangian Drifter Construction Manual. WOCE Rep. 63,” Scripps Institution of Oceanography, La Jolla, 1991.

[53]   A. Toompuu, J. Heinloo and T. Soomere, “Modelling of the Gibraltar Salinity Anomaly,” Oceanology, Vol. 29, No. 6, 1989, pp. 698-702.

[54]   R. W. Griffiths, E. J. Hopfinger, “The Structure of Mesoscale Turbulence and Horizontal Spreading at Ocean Fronts,” Deep Sea Research Part A. Oceanographic Research Papers, Vol. 31, No. 3, 1984, pp. 245-269. doi:10.1016/0198-0149(84)90104-3

[55]   J. Heinloo and A. Toompuu, “Eddy-to-Mean Energy Transfer in Geophysical Turbulent Jet Flows,” Proceedings of the Estonian Academy of Sciences, Physics and Mathematics, Vol. 56, No. 3, 2007, pp. 283-294.

[56]   P. B. Rhines and W. R. Holland, “A Theoretical Discussion of Eddy-Driven Mean Flows,” Dynamics of Atmospheres and Oceans, Vol. 3, No. 2-4, 1979, pp. 289-325. doi:10.1016/0377-0265(79)90015-0

[57]   J. R. Herring, “On the Statistical Theory of Two Dimensional Topographic Turbulence,” Journal of the Atmospheric Sciences, Vol. 34, No. 11, 1977, pp. 1731-1750. doi:10.1175/1520-0469(1977)034<1731:OTSTOT>2.0.CO;2

[58]   F. Webster, “Measurements of Eddy Fluxes of Momentum in the Surface Layer of the Gulf Stream,” Tellus, Vol. 17, No. 2, 1965, pp. 239-245.

[59]   J. Heinloo, “Eddy-Driven Flows over Varying Bottom Topography in Natural Water Bodies,” Proceedings of the Estonian Academy of Sciences, Physics and Mathematics, Vol. 55, No. 4, 2006, pp. 235-245.

[60]   D. B. Haidvogel and D. H. Brink, “Mean Currents Driven by Topographic Drag over the Continental Shelf and Slope,” Journal of Physical Oceanography, Vol. 16, No. 12, 1986, pp. 2159-2171. doi:10.1175/1520-0485(1986)016<2159:MCDBTD>2.0.CO;2

[61]   F. P. Bretherton and D. B. Haidvogel, “Two-Dimensional Turbulence above Topography,” Journal of Fluid Mechanics, Vol. 78, No. 1, 1976, pp. 129-154. doi:10.1017/S002211207600236X

[62]   S. T. Adcock and D.P. Marshall, “Interactions between Geostrophic Eddies and the Mean Circulation over Large-Scale Bottom Topography,” Journal of Physical Oceanography, Vol. 30, No. 12, 2000, pp. 3232-3238.