Cross-Validation, Shrinkage and Variable Selection in Linear Regression Revisited

Show more

References

[1] C. Chen and S. L. George, “The Bootstrap and Identification of Prognostic Factors via Cox’s Proportional Hazards Regression Model,” Statistics in Medicine, Vol. 4, No. 1, 1985, pp. 39-46. doi:10.1002/sim.4780040107

[2] J. C. van Houwelingen and S. le Cessie, “Predictive Value of Statistical Models,” Statistics in Medicine, Vol. 9, No. 11, 1990, pp. 1303-1325.
doi:10.1002/sim.4780091109

[3] F. E. Harrell, K. L. Lee and D. B. Mark, “Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors,” Statistics in Medicine, Vol. 15, No. 4, 1996, pp. 361-387.
doi:10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

[4] W. Sauerbrei, “The Use of Resampling Methods to Simplify Regression Models in Medical Statistics,” Journal of the Royal Statistical Society Series C—Applied Statis tics, Vol. 48, No. 3, 1999, pp. 313-329.
doi:10.1111/1467-9876.00155

[5] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Series B, Vol. 58, No. 1, 1996, pp. 267-288.

[6] W. Sauerbrei, P. Royston and H. Binder, “Selection of Important Variables and Determination of Functional Form for Continuous Predictors in Multivariable Model Building,” Statistics in Medicine, Vol. 26, No. 30, 2007, pp. 5512-5528. doi:10.1002/sim.3148

[7] N. Mantel, “Why Stepdown Procedures in Variable Se lection?” Technometrics, Vol. 12, No. 3, 1970, pp. 621-625. doi:10.1080/00401706.1970.10488701

[8] P. Royston and W. Sauerbrei, “Multivariable Model-Building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Variables,” Wiley, Chichester, 2008.
doi:10.1002/9780470770771

[9] J. C. van Houwelingen, “Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy,” Statistica Neerlandica, Vol. 55, No. 1, 2001, pp. 17-34.
doi:10.1111/1467-9574.00154

[10] W. Sauerbrei, N. Holl?nder and A. Buchholz, “Investigation about a Screening Step in Model Selection,” Statistics and Computing, Vol. 18, No. 2, 2008, pp. 195-208.
doi:10.1007/s11222-007-9048-5

[11] J. B. Copas, “Regression, Prediction and Shrinkage (with Discussion),” Journal of the Royal Statistical Society Series B-Methodological, Vol. 45, No. 3, 1983, pp. 311-354.

[12] L. Breiman, “Better Subset Regression Using the Non negative Garrote,” Technometrics, Vol. 37, No. 4, 1995, pp. 373-384. doi:10.1080/00401706.1995.10484371

[13] K. Vach, W. Sauerbrei and M. Schumacher, “Variable Selection and Shrinkage: Comparison of Some Approaches,” Statistica Neerlandica, Vol. 55, No. 1, 2001, pp. 53-75. doi:10.1111/1467-9574.00156

[14] J. C. Wyatt and D. G. Altman, “Prognostic Models: Clinically Useful or Quickly Forgotten?” British Medical Journal, Vol. 311, No. 7019, 1995, pp. 1539-1541.
doi:10.1136/bmj.311.7019.1539

[15] S. Varma and R. Simon, “Bias in Error Estimation When Using Cross-Validation for Model Selection,” BMC Bio informatics, Vol. 7, No. 91, 2006.
doi:10.1186/1471-2105-7-91

[16] M. Schumacher, N. Holl?nder and W. Sauerbrei, “Re sampling and Cross-Validation Techniques: A Tool to Reduce Bias Caused by Model Building?” Statistics in Medicine, Vol. 16, No. 24, 1997, pp. 2813-2827.
doi:10.1002/(SICI)1097-0258(19971230)16:24<2813::AID-SIM701>3.0.CO;2-Z

[17] G. Ihorst, T. Frischer, F. Horak, M. Schumacher, M. Kopp, J. Forster, J. Mattes and J. Kuehr, “Long and Medium-Term Ozone Effects on Lung Growth Including a Broad Spectrum of Exposure,” European Respiratory Journal, Vol. 23, No. 2, 2004, pp. 292-299.
doi:10.1183/09031936.04.00021704

[18] A. Buchholz, N. Holl?nder and W. Sauerbrei, “On Properties of Predictors Derived with a Two-Step Bootstrap Model Averaging Approach—A Simulation Study in the Linear Regression Model,” Computational Statistics and Data Analysis, Vol. 52, No. 5, 2008, pp. 2778-2793.
doi:10.1016/j.csda.2007.10.007

[19] R. W. Johnson, “Fitting Percentage of Body Fat to Simple Body Measurements,” Journal of Statistics Education, Vol. 4, No. 1, 1996.

[20] F. E. Harrell, “Regression Modeling Strategies, with Applications to Linear Models, Logistic Regression and Survival Analysis,” Springer, New York, 2001.

[21] E. Steyerberg, R. Eijkemans, F. Harrell and J. Habbema, “Prognostic Modelling with Logistic Regression Analysis: A Comparison of Selection and Estimation Methods in Small Data Sets,” Statistics in Medicine, Vol. 19, No. 8, 2000, pp. 1059-1079.
doi:10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>3.0.CO;2-0

[22] J. Bien, J. Taylor and R. Tibshirani, “A Lasso for Hierarchical Interactions,” Submitted 2012.

[23] F. E. Harrell, K. L. Lee, R. M. Califf, D. B. Pryor and R. A. Rosati, “Regression Modeling Strategies for Improved Prognostic Prediction,” Statistics in Medicine, Vol. 3, No. 2, 1984, pp. 143-152. doi:10.1002/sim.4780030207

[24] J. Q. Fan and R. Z. Li, “Variable Selection via Noncon cave Penalized Likelihood and Its Oracle Properties,” Journal of the American Statistical Association, Vol. 96, No. 456, 2001, pp. 1348-1360.
doi:10.1198/016214501753382273

[25] H. Zou and T. Hastie, “Regularization and Variable Se lection via the Elastic Net,” Journal of the Royal Statistical Society Series B, Vol. 67, No. 2, 2005, pp. 301-320.
doi:10.1111/j.1467-9868.2005.00503.x

[26] C. Porzelius, M. Schumacher and H. Binder, “Sparse Regression Techniques in Low-Dimensional Survival Data Settings,” Statistics and Computing, Vol. 20, No. 2, 2010, pp. 151-163. doi:10.1007/s11222-009-9155-6

[27] C. L. Leng, Y. Lin and G. Wahba, “A Note on the Lasso and Related Procedures in Model Selection,” Statistica Sinica, Vol. 16, 2006, pp. 1273-1284.