[1] Y. J. Seol, J. Y. Lee, Y. J. Park, Y. M. Lee, Y. Ku, I. C. Rhyu, S. J. Lee, S. B. Han and C. P. Chung, “Chitosan Sponges as Tissue Engineering Scaffolds for Bone Formation,” Biotechno Lett, Vol. 26, 2004, pp. 1037-1041.
[2] F. Zhao, W. L. Grayson, T. Ma, B. Bunnell and W. W. Lu “Effects of Hydroxyapatite in 3-D Chitosan–Gelatin Polymer Network On Human Mesenchymal Stem Cell Construct Development,” Biomaterials, Vol. 27, 2006, pp. 1859-1867.
[3] T. Kawakami, M. Antoh, H. Hasegawa, T. Yamagish, M. Ito and S. Eda, “Experimental Study On Osteoconductive Properties of a Chitosan-Bonded Hydroxyapatite Self- Hardening Paste,” Biomaterials, Vol. 13, 1992, pp. 759- 763.
[4] Z. Ge, S. Baguenard, L. Y. Lim, A. Wee and E. Khor “Hydroxyapatite-Chitin Materials as Potential Tissue Engineered Bone Substitutes,” Biomaterials, Vol. 25, 2004, pp. 1049-1058.
[5] Kong LJ, Gao Y, Lu GY, Gong YD, Zhao NM, Zhang X F. A study on the bioactivity of chitosan/nano- hydroxyapatite composite scaffolds for bone tissue engineering. Eur Poly J 2006; 42: 3171-3179.
[6] Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004; 25: 779-785.
[7] Zhang Y, Zhang M. Synthesis and characterization ofmacroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 2001; 55: 304-312.
[8] J. M. Oliveira, M. T. Rodrigues, S. S. Silva, P. B. Malafaya, M. E. Gomes, C. A. Viegas, I. R. Dias, J. T. Azevedo, J. F. Mano and R. L. Reis, “Novel Hydro- xyapatite/Chitosan Bilayered Scaffold for Osteochondral Tissue-Engineering Applications: Scaffold Design and its Performance when Seeded with Goat Bone Marrow Stromal Cells,” Biomaterials 2006; 27: 6123-6137.
[9] Viala S, Freche M, Lacout JL. Preparation of a new organic mineral-composite: chitosan-hydroxyapatite. Ann Chin Sci Mater, 1998; 23: 69-72.
[10] Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan- gelatin network composite scaffolds. Biomaterials 2002; 23: 3227-3234.
[11] Correlo MV, Luciano FB, Mrinal B, Joao F M, Nuno MN, Ruis LR. Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications. Macroml Mater Eng 2005; 290: 1157-1165.
[12] Shen X, Tong H, Jiang T, Zhu Z, Wan P, Hu J. Homogeneous chitosan/carbonate apatite/citric acid nano- composites prepared through a novel in situ precipitation method. Comp Sci Tech 2007; 67(11-12): 2238-2245.
[13] Kokubo T, Hanakawab M, Kawashita M, Minoda, Beppu T, MiyamotoT, NakamurT. Apatite formation on non-woven fabric of carboxymethylated chitin in SBF. Biomaterials, 2004; 25: 4485-4488.
[14] Tuzlakoglu K, Reis R L. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J Mater Sci Mater Med 2007; 18: 1279-1286.
[15] Guo ZH, Wei SY, Shedd B, Scaffaro R, Pereira T, Hahn HT. Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl- ester resin nanocomposites. J Mater Chem 2007; 17: 806-813.
[16] Kuo MC, Tsai C, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phy 2005; 90: 185-195.
[17] Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Chemical reaction of bioactive glass and glass– ceramics with a simulated body fluid. J Mater Sci Mater Med, 1992; 1: 79-83.
[18] Rusua VM, Ng CH, Wilke M, Tierscha B, Fratzld P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 2005; 26: 5414-5426.
[19] Pang YX, Bao X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 2003; 23: 1697-704.
[20] Anee TK, Palanichamy M, Ashok M. Influence of iron and temperature on the crystallization of calcium phosphates at the physiological pH. Mater Lett 2004; 58: 478-482.
[21] Chen CW, Riman RE, Tenhuisen KS, Brown K. Mechanochemical–hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors. JCryst Growth 2004; 270: 615-623.
[22] Koumoulidis GC, Katsoulidis AP, Ladavos AK, Pomonis PJ, Trapalis CC, Sdoukos AT, Vaimakis TC. Preparation of hydroxyapatite via microemulsion route. J Colloid Interf Sci, 2003; 259: 254-260.
[23] Li BQ, Hu QL, Qian XZ, Fang ZP, Shen JC. Bioabsorbable chitosan/hydroxyapatite composite rod for internal fixation of bone fracture prepared by in situ precipitation. Acta. Polym. Sin 2002; 6: 828-833.
[24] Kokubo T, Ito I, Huang T. P–rich layer formed on high–strength bioactive glass–ceramics A–W. J Biomed Mater Res 1990: 24: 331-343.
[25] Li P, Ohtsukl C, Kokubo T. Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass/ ceramics. J Appl Biomater 1993: 4: 221-229.
[26] Posner AS. The mineral of bone. Clin Orthop Rel Res 1985;200: 87-93.
[27] Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 1998; 7: 2519-2527.
[28] Lu X, Leng Y. Thyeoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005; 26: 1097-1108.
[29] Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, Hamada Y, Takahashi J. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 2004; 25: 3807-3812.
[30] Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 1998; 46: 2519-2527.