Performance Evaluation of Efficient XOR Structures in Quantum-Dot Cellular Automata (QCA)

Show more

Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. Fundamental unit in building of QCA circuits is a QCA cell. A QCA cell is an elementary building block which can be used to build basic gates and logic devices in QCA architectures. This paper evaluates the performance of various implementations of QCA based XOR gates and proposes various novel layouts with better performance parameters. We presented the various QCA circuit design methodology for XOR gate. These layouts show less number of crossovers and lesser cell count as compared to the conventional layouts already present in the literature. These design topologies have special functions in communication based circuit applications. They are particularly useful in phase detectors in digital circuits, arithmetic operations and error detection & correction circuits. The comparison of various circuit designs is also given. The proposed designs can be effectively used to realize more complex circuits. The simulations in the present work have been carried out using QCADesigner tool.

References

[1] C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum Cellular Automata,” Nanotechnology, Vol. 4, No. 1, 1993, pp. 49-57. doi:10.1088/0957-4484/4/1/004

[2] Y. Kim, “Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics,” Transaction on Electrical and Electronic Materials, Vol. 11, No. 3, 2010, pp. 93-105. doi:10.4313/TEEM.2010.11.3.093

[3] Y. Taur, “CMOS Design near the Limit of Scaling,” IBM Journal of Research & Development, Vol. 46, No. 2, 2002, pp. 213-222. doi:10.1147/rd.462.0213

[4] D. J. Frank, “Power-Constrained CMOS Scaling Limits,” IBM Journal of Research & Development, Vol. 46, No. 2, 2002, pp. 235-244. doi:10.1147/rd.462.0235

[5] P. D. Tougaw and C. S. Lent, “Logical Devices Implemented Using Quantum Cellular Automata,” Journal of Applied Physics, Vol. 75, No. 3, 1994, pp. 1818-1825.
doi:10.1063/1.356375

[6] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent and G. L. Snider, “Realization of a Functional Cell for Quantum-Dot Cellular Automata,” Science, Vol. 277, No. 5328, 1997, pp. 928-930. doi:10.1126/science.277.5328.928

[7] International Technology Roadmap for Semiconductors (ITRS), 2004.
http://www.itrs.net/Links/2004Update/2004Update.htm

[8] C. G. Smith, “Computation without Current,” Science, Vol. 284, No. 5412, 1999, pp. 274-274.
doi:10.1126/science.284.5412.274

[9] J. Timler and C. S. Lent, “Power Gain and Dissipation in Quantum-Dot Cellular Automata,” Journal of Applied Physics, Vol. 91, No. 2, 2002, pp. 823-831.
doi:10.1063/1.1421217

[10] D. A. Antonelli, et al., “Quantum-Dot Cellular Automata (QCA) Circuit Partitioning: Problem Modeling and Solutions,” Proceedings of the 41st ACM/IEEE Design Automata Conference, 2004, pp. 363-368.

[11] M. T. Niemier and P. M. Kogge, “Exploring and Exploiting Wire-Level Pipelining in Emerging Technologies,” ACM SIGARCH Computer Architecture News, Vol. 29, No. 2, 2001, pp. 166-177. doi:10.1145/384285.379261

[12] B. Isaksen and C. S. Lent, “Molecular Quantum-Dot Cellular Automata,” Proceedings of the Third IEEE Conference on Nanotechnology, Vol. 2, 2003, pp. 5-8.

[13] C. S. Lent and B. Isaksen, “Clocked Molecular Quantum-Dot Cellular Automata,” IEEE Transactions on Electron Devices, Vol. 50, No. 9, 2003, pp. 1890-1896.
doi:10.1109/TED.2003.815857

[14] M. Z. Moghadam and K. Navi, “Ultra-Area-Efficient Reversible Multiplier,” Microelectronics Journal, Vol. 43, No. 6, 2012, pp. 377-385.
doi:10.1016/j.mejo.2012.02.004

[15] K. Navi, H. H. Sajedi, R. F. Mirzaee, M. H. Moaiyeri, A. Jalali and O. Kavehei, “High-Speed Full Adder Based on Minority Function and Bridge Style for Nanoscale,” Integration, the VLSI Journal, Vol. 44, No. 3, 2011, pp. 155-162.

[16] M. M. Arjmand, M. Soryani, K. Navi and M. A. Tehrani, “A Novel Ternary-to-Binary Converter in Quantum-Dot Cellular Automata,” IEEE Computer Society Annual Sym posium on VLSI (ISVLSI), Amherst, 19-21 August 2012, pp. 147-152.

[17] M. Hayati and A. Rezaei, “Design and Optimization of Full Comparator Based on Quantum-Dot Cellular Automata,” ETRI Journal, Vol. 34, No. 2, 2012, pp. 284-287.
doi:10.4218/etrij.12.0211.0258

[18] S. Karthigai Lakshmi and G. Athisha, “Design and Ana lysis of Subtractors Using Nanotechnology Based QCA,” European Journal of Scientific Research, Vol. 53, No. 4, 2011, pp. 524-532.

[19] L. Lu, W. Q. Liu, M. O’Neill and E. E. Swartzlander, “QCA Systolic Array Design,” IEEE Transactions on Computers, December 2011.

[20] W. J. Townsend and J. A. Abraham, “Complex Gate Im plementations for Quantum Dot Cellular Automata,” Proceedings of the 4th IEEE Conference of Nanotechnology, Munich, 17-19 August 2004, pp. 625-627.

[21] G. Snider, A. Orlov, C. S. Lent, G. Bernstein, M. Lie berman and T. Fehlner, “Implementation of Quantum-Dot Cellular Automata,” Proceedings of the ICONN, 2006, pp. 544-547.

[22] G. Toth and C. S. Lent, “Quasiadiabatic Switching for Metal-Island Quantum Dot Cellular Automata,” Journal of Applied Physics, Vol. 85, No. 5, 1999, pp. 2977-2984.

[23] K. Kim, K. Wu and R. Karri, “The Robust QCA Adder Designs Using Composable QCA Building Blocks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and System, Vol. 26, No. 1, 2007, pp. 176-183.

[24] K. Walus, T. J. Dysart, G. A. Jullien and R. A. Budiman, “QCA Designer—A Rapid Design and Simulation Tool for Quantum Dot Cellular Automata,” IEEE Transactions on Nanotechnology, Vol. 3, No. 1, 2004, pp. 26-31.
doi:10.1109/TNANO.2003.820815