JBNB  Vol.4 No.2 A , April 2013
Catalytic Activity of Amino Acids-Metal Complexes in Oxidation Reactions

Studies were carried out to determine the activity of complexes of the essential amino acids DL-Lysine and L-Methionine with heavy metals in the oxidation of cyclohexene with tert-butylhydroperoxide in toluene at 80°C. All complexes were prepared through interaction of metal ions and DL-Lysine and L-Methionine at room temperature in aqueous solutions. Only the complexes of Mo and W were obtained from acidic aqueous solution. These complexes were characterized by FT-IR, Moessbauer spectroscopy and EPR analysis. The products of the oxidation reactions were identified by GC/MS analysis. The complexes of Mo and V showed the best activity in the epoxidation reaction of cyclohexene in comparison with other complexes, such as Ni, Mn, Zn, Co, Cu, Cr, Fe and W. Using semi-empirical quantum-chemistry methods, the full energy of the Mo complexes was calculated and their probable structure is presented.

Cite this paper
K. Vassilev, S. Turmanova, E. Ivanova and V. Trifonova, "Catalytic Activity of Amino Acids-Metal Complexes in Oxidation Reactions," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 28-36. doi: 10.4236/jbnb.2013.42A004.
[1]   K. A. Jorgensen, “Transition-Metal-Catalyzed Epoxidations,” Chemical Reviews, Vol. 89, No. 3, 1989, pp. 431458. doi:10.1021/cr00093a001

[2]   Q. H. Xia, H. Ge, C. Ye, Z. Liu and K. Su, “Advances in Homogegeneous and Heterogeneous Catalytic Asymmetric Epoxidation,” Chemical Reviews, Vol. 105, No. 5, 2005, pp. 1603-1662. doi:10.1021/cr0406458

[3]   V. B. Valodkar, G. Tembe, R. Ram and H. Rama, “Catalytic Asymmetric Epoxidation of Unfunctionalized Olefins by Supported Cu(II)-Amino Acid Complexes,” Catalysis Letters, Vol. 90, No. 1-2, 2003, pp. 91-94. doi:10.1023/A:1025828629486

[4]   V. B. Valodkar, G. Tembe, M. Ravindranathan and H. Rama, “Catalytic Epoxidation of Olefins by PolymerAnchored Amino Acid Ruthenium Complexes,” Reactive and Functional Polymers, Vol. 56, No. 1, 2003, pp. 1-15. doi:10.1016/S1381-5148(03)00048-8

[5]   K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima and N. Mizuno, “Efficient Heterogeneous Epoxidation of Alkenes by a Supported Tungsten Oxide Catalyst,” Angewandte Chemie International Edition, Vol. 50, No. 50, 2011, pp. 12062-12066. doi:10.1002/anie.201106064

[6]   M. Abrantes, F. Paz, A. Valente, C. Pereira, S. Gago, A. Rodriges, J. Klinowski, M. Pillinger and I. Goncalves, “Aminoacid-Functionalized Cyclopentadienyl Molybdenum Tricarbonyl Complex and Its Use in Catalytic Olefin Epoxidation,” Journal of Organometallic Chemistry, Vol. 694, No. 12, 2009, pp. 1826-1833. doi:10.1016/j.jorganchem.2009.01.012

[7]   M. Masteri-Farahani, “New Molybdenum Epoxidation Catalyst Derived from Nanoporous MCM-41 Supported Glycine Schiff-Base,” Journal of Nanostructures, Vol. 2, No. 1, 2012, pp. 43-50.

[8]   C. A. McAuliffe, J. Quagliano and L. Vallarino, “Metal Complexes of the Amino Acid DL-Methionine,” Inorganic Chemistry, Vol. 5, No. 11, 1966, pp. 1996-2003. doi:10.1021/ic50045a034

[9]   V. Vujacic, J. Savic, S. Sovilj, K. Szecsenyi, N. Todorovic, M. Petkovic and V. Vasic, “Mechnism of Complex Formation between [AuCl4]¯ and L-Methionine,” Polyhedron, Vol. 28, No. 3, 2009, pp. 593-599. doi:10.1016/j.poly.2008.11.045

[10]   B. K. Singh, H. Rajour and A. Prakash, “Synthesis, Characterization and Biological Activity of Transition Metal Complexes with Schiff Bases Derived from 2-Nitrobenzaldehyde with Glycine and Methionine,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 94, 2012, pp. 143-151. doi:10.1016/j.saa.2012.03.077

[11]   M. H. Khodabandeh, H. Reisi, K. Zare and M. Zahedi, “A Theoretical Elucidation of Coordination Properties of Histidine and Lysine to Mn(II),” International Journal of Mass Spectrometry, Vol. 313, No. 1, 2012, pp. 47-57. doi:10.1016/j.ijms.2011.12.019

[12]   Y. Z. Hao, Z. Li and J. Tian, “Synthesis, Chracteristics and Catalytic Activity of Water-Soluble [Pd(lysine·HCl)(Cl)2] Complex as Hydrogenation Catalyst,” Journal of Molecular Catalysis, A: Chemical, Vol. 265, No. 1, 2007, pp. 258-267. doi:10.1016/j.molcata.2006.09.045

[13]   O. Cozar, I. Bratu, L. Szabo, I. Cozar, V. Chic and L. David, “IR and ESR Study of Copper(II) Complexes with 15N-Labelled Lysine and Ornithine,” Journal of Molecular Structure, Vol. 993, No. 1-3, 2011, pp. 397-403. doi:10.1016/j.molstruc.2011.02.001

[14]   M. Dimitrova, S. Turmanova and K. Vassilev, “Complexes of Glutathione with Heavy Metals as Catalysts for Oxidation,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 9, No. 1, 2010, pp. 69-78.

[15]   K. Vassilev, M. Dimitrova, S. Turmanova and R. Milina, “Catalytic Activity of Histidine-Metal Complexes in Oxidation Reaction,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 43, No. 3, 2013, pp. 243-249. doi:10.1080/15533174.2012.740713

[16]   S. Turmanova and K. Vassilev, “Molybdenum Complexes: Structure, Properties and Applications,” In: M. Ortiz and T. Herrera, Eds., Molybdenum: Characteristics, Production and Applications, Nova Science Publishers, New York, 2012, pp. 77-116.

[17]   H. A. Kuska and P. Yang, “Effects of Substituents on the Spectroscopic Properties of Tetradentate Ligand-Oxovanadium(IV) Complexes,” Inorganic Chemistry, Vol. 16, No. 8, 1977, pp. 1938-1941. doi:10.1021/ic50174a021

[18]   O. A. Rajan and A. Chakravorty, “Molybdenum Complexes. I. Acceptor Behavior and Related Properties of Mo(VI)O2(Tridentate) Systems,” Inorganic Chemistry, Vol. 20, No. 3, 1981, pp. 660-664. doi:10.1021/ic50217a005

[19]   F. E. Dickson, C. J. Kunesh, E. L. McGinnis and L. Petrakis, “Use of Electron Spin Resonance to Characterize the Vanadium(IV)-Sulfur Species in Petroleum,” Analytical Chemistry, Vol. 44, No. 6, 1972, pp. 978-981. doi:10.1021/ac60314a009

[20]   M. A. Porai-Koshits and A. O. Atovmian, “Crystalo Chemistry and Stereochemistry of Coordination Compounds of Molybdenum,” Nauka, Moscow, 1974, pp. 1-229.

[21]   A. A. Levim and P. N. Dyachkov, “Electronic Structure, Geometry, Isomerism and Transformations of Heteroligand Molecules,” Nauka, Moscow, 1990, pp. 1-256.

[22]   R. A. Sheldon, “Synthetic and Mechanistic Aspects of Metal-Catalysed Epoxidations with Hydroperoxides,” Journal of Molecular Catalysis, Vol. 7, No. 1, 1980, pp. 107126. doi:10.1016/0304-5102(80)85010-3

[23]   H. Weiner, A. Trovarelli and R. Finke, “Expanded Product, Plus Kinetic and Mechanistic, Studies of Polyoxoanion-Based Cyclohexene Oxidation Catalysis: The Dedection of 70 Products at Higher Conversion Leading to a Simple, Product-Based Test for the Presence of Olefin Autoxidation,” Journal of Molecular Catalysis, A. Chemical, Vol. 191, No. 2, 2003, pp. 217-252. doi:10.1016/S1381-1169(02)00344-8