JBNB  Vol.4 No.2 A , April 2013
Physicochemical Properties of Pyrolysis Bio-Oil from Sugarcane Straw and Sugarcane in Natura

Under the renewable energy context, sugarcane biomass pyrolysis has been growing as a convenient route to produce bio-oil, which can be set into the chemical industry and refineries as building blocks or combustion fuel. In this work sugarcane straw was submitted to direct pyrolysis in a fluidized bed pilot plant at 500°C, in presence of air. Sugarcane in natura was also pyrolysed as a model for comparison, in order to determine the viability of processing different sources of raw biomass. The physicochemical characterization of the biomass precursors as well as of the bio-oils was also carried out, which points both biomass feedstocks as suitable for bio-oil production in terms of viscosity, surface tension, density and acidity. The bio-oil obtained from sugarcane in natura presented higher carbon and hydrogen content as well as lower oxygen content. On the other hand, the metal content is higher in the bio-oil obtained from sugarcane straw, in special the iron and potassium contents were 807 ppm and 123 ppm against 27 ppm and 1 ppm in the bio-oil from sugarcane in natura. Aliphatic and aromatic compounds as well as carbohydrates scaffolds were identified as the main components of the bio-oil. GC-MS analyses showed aromatic products from lignine fragmentation and free sugars and sugar derivatives.

Cite this paper: J. Durange, M. Santos, M. Pereira, L. Fernandes Jr., M. Souza, A. Mendes, L. Mesa, C. Sánchez, E. Sanchez, J. Pérez and N. Carvalho, "Physicochemical Properties of Pyrolysis Bio-Oil from Sugarcane Straw and Sugarcane in Natura," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 10-19. doi: 10.4236/jbnb.2013.42A002.

[1]   M. Oppenheimer, “Global Warming and the Stability of the West Antarctic Ice Sheet,” Nature, Vol. 393, No. 6683, 1998, pp. 325-332. doi:10.1038/30661

[2]   C. Okkerse and H. van Bekkum, “From Fossil to Green,” Green Chemistry, Vol. 1, No. 2, 1999, pp. 107-114. doi:10.1039/a809539f

[3]   G. W. Huber, S. Iborra and A. Corma, “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering,” Chemical Reviews, Vol. 106, No. 9, 2006, pp. 4044-4098. doi:10.1021/cr068360d

[4]   A. Corma, S. Iborra and A. Velty, “Chemical Routes for the Transformation of Biomass into Chemicals,” Chemical Reviews, Vol. 107, No. 6, 2007, pp. 2411-2502. doi:10.1021/cr050989d

[5]   J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen, “The Catalytic Valorization of Lignin for the Production of Renewable Chemicals,” Chemical Reviews, Vol. 110, No. 6, 2010, pp. 3552-3599. doi:10.1021/cr900354u

[6]   D. Mohan, C. U. Pittman Jr. and P. H. Steele, “Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review,” Energy & Fuels, Vol. 20, No. 3, 2006, pp. 848-889. doi:10.1021/ef0502397

[7]   A. Pandey, C. R. Soccol, P. Nigam and V. T. Soccol, “Biotechnological Potential of Agro-Industrial Residues. I: Sugarcane Bagasse,” Bioresource Technology, Vol. 74, No. 1, 2000, pp. 69-80. doi:10.1016/S0960-8524(99)00142-X

[8]   J. Goldemberg, S. T. Coelho and P. Guardabassi, “The Sustainability of Ethanol Production from Sugarcane,” Energy Policy, Vol. 36, No. 6, 2008, pp. 2086-2097. doi:10.1016/j.enpol.2008.02.028

[9]   J. A. Cunha, M. M. Pereira, L. M. M. Valente, P. R. de la Piscina, N. Homs and M. R. L. Santos, “Waste Biomass to Liquids: Low Temperature Conversion of Sugarcane Bagasse to Bio-Oil. The Effect of Combined Hydrolysis Treatments,” Biomass and Bioenergy, Vol. 35, No 5, 2011, pp. 2106-2116. doi:10.1016/j.biombioe.2011.02.019

[10]   P. T. Williams and N. Nugranad, “Comparison of Products from the Pyrolysis and Catalytic Pyrolysis of Rice Husks,” Energy, Vol. 25, No. 6, 2000, pp. 493-513. doi:10.1016/S0360-5442(00)00009-8

[11]   S. Zhang, Y. Yan, T. Li and Z. Ren, “Upgrading of Liquid Fuel from the Pyrolysis of Biomass,” Bioresource Technology, Vol. 96, No. 5, 2005, pp. 545-550. doi:10.1016/j.biortech.2004.06.015

[12]   A. Oasmaa and S. Czernik, “Fuel Oil Quality of Biomass Pyrolysis Oils—State of the Art for the End User,” Energy & Fuels, Vol. 13, No. 4, 1999, pp. 914-921. doi:10.1021/ef980272b

[13]   S. Czernik and A. V. Bridgwater, “Overview of Applications of Biomass Fast Pyrolysis Oil,” Energy & Fuels, Vol. 18, No. 2, 2004, pp. 590-598. doi:10.1021/ef034067u

[14]   M. Garcìa-Pérez, A. Chaala and C. Roy, “Vacuum Pyrolysis of Sugarcane Bagasse,” Journal of Analytical and Applied Pyrolysis, Vol. 65, No. 2, 2002, pp. 111-136. doi:10.1016/S0165-2370(01)00184-X

[15]   M. C. Samolada, W. Baldauf and I. A. Vasalos, “Production of a Bio-Gasoline by Upgrading Biomass Flash Pyrolysis Liquids via Hydrogen Processing and Catalytic Cracking,” Fuel, Vol. 77, No. 14, 1998, pp. 1667-1675. doi:10.1016/S0016-2361(98)00073-8

[16]   T. P. Vispute, H. Zhang, A. Sanna, R. Xiao and G. W. Huber, “Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils,” Science, Vol. 330, No. 6008, 2010, pp. 1222-1227. doi:10.1126/science.1194218

[17]   G. Fogassy, N. Thegarid, Y. Schuurman and C. Mirodatos, “From Biomass to Bio-Gasoline by FCC Co-Processing: Effect of Feed Composition and Catalyst Structure on Product Quality,” Energy & Environmental Science, Vol. 4, No. 12, 2011, pp. 5068-5076. doi:10.1039/c1ee02012a

[18]   D. S. Scott, P. Majerski, J. Piskorz and D. Radlein, “A Second Look at Fast Pyrolysis of Biomass—The RTI Process,” Journal of Analytical and Applied Pyrolysis, Vol. 51, No. 1-2, 1999, pp. 23-37. doi:10.1016/S0165-2370(99)00006-6

[19]   Q. Zhang, J. Chang, T. J. Wang and Y. Xu, “Review of Biomass Pyrolysis Oil Properties and Upgrading Research,” Energy Conversion and Management, Vol. 48, No. 1, 2007, pp. 87-92. doi:10.1016/j.enconman.2006.05.010

[20]   J. Lédé, F. Broust, F. T. Ndiaye and M. Ferrer, “Properties of Bio-Oils Produced by Biomass Fast Pyrolysis in a Cyclone Reactor,” Fuel, Vol. 86, No. 12-13, 2007, pp. 1800-1810. doi:10.1016/j.fuel.2006.12.024

[21]   M. Garcìa-Pérez, A. Chaala, H. Pakdel, D. Kretschmer and C. Roy, “Vacuum Pyrolysis of Softwood and Hardwood Biomass: Comparison between Product Yields and Bio-Oil Properties,” Journal of Analytical and Applied Pyrolysis, Vol. 78, No. 1, 2007, pp. 104-116. doi:10.1016/j.jaap.2006.05.003

[22]   C. J. Durán-Valle, M. Gómez-Corzo, J. Pastor-Villegas and V. Gómez-Serrano, “Study of Cherry Stones as Raw Material in Preparation of Carbonaceous Adsorbents,” Journal of Analytical and Applied Pyrolysis, Vol. 73, No. 1, 2005, pp. 59-67. doi:10.1016/j.jaap.2004.10.004

[23]   A. V. Bridgwater, “Renewable Fuels and Chemicals by Thermal Processing of Biomass,” Chemical Engineering Journal, Vol. 91, No. 2-3, 2003, pp. 87-102. doi:10.1016/S1385-8947(02)00142-0

[24]   M. Ikura, M. Stanciulescu and E. Hogan, “Emulsification of Pyrolysis Derived Bio-Oil in Diesel Fuel,” Biomass & Bioenergy, Vol. 24, No. 3, 2003, pp. 221-232. doi:10.1016/S0961-9534(02)00131-9