AJPS  Vol.4 No.4 , April 2013
Stability of Brazilian Seasonally Dry Forests under Climate Change: Inferences for Long-Term Conservation
Abstract: We identified climatically stable areas of seasonally dry forests (SDFs) from Central Brazil through time and assessed the effectiveness of the current reserves network in representing these climatically stable areas, as well as areas of high suitability in the present or in the future only. We used an ensemble approach based on several methods for ecological niche modelling (ENMs) to obtain potential distributions 16 SDF’ species for past (last glacial maximum), present, and future (end of XXI century) climate scenarios. We then computed how many current Brazilian reserves matched both stable areas (suitable areas for all time periods), present and future geographical ranges alone for each species, in a multi-level gap analysis. We found range shifts due to climate changes for SDF’ species. Although the future geographical range and stable areas for all analyzed species matched at least with one reserve, many protected areas will lose importance in protecting suitable areas for species in the future. Moreover, the current Brazilian reserves cover only a small amount of their climatically stable areas. However, some reserves will be suitable for many SDF’ species (90%) at the same time, but climatically stable for only half of them. Our findings show that vegetation community from SDFs may persist in Brazilian territories until the end of XXI century, and challenges about long-term conservation of the SDFs may be partially reached with already existing Brazilian reserve network, however the reserves should be connected to permit habitat tracking.
Cite this paper: R. Collevatti, M. Lima-Ribeiro, J. Diniz-Filho, G. Oliveira, R. Dobrovolski and L. Terribile, "Stability of Brazilian Seasonally Dry Forests under Climate Change: Inferences for Long-Term Conservation," American Journal of Plant Sciences, Vol. 4 No. 4, 2013, pp. 792-805. doi: 10.4236/ajps.2013.44098.

[1]   R. A. Mittermeier, G. P. Robles and C. G. Mittermeier, “Megadiversity: Earth’s Biologically Wealthiest Nations,” Conservation International e Agrupación Sierra Madre Cidade do México, 1997.

[2]   A. M. Giulietti, R. M. Harley, L. P. de Queiroz, M. G. L. Wanderley and C. van den Berg, “Biodiversity and Conservation of Plants in Brazil,” Conservation Biology, Vol. 19, No. 3, 2005, pp. 632-639. doi:10.1111/j.1523-1739.2005.00704.x

[3]   R. Dobrovolski, R. D. Loyola, P. de Marco Jr. and J. A. F. Diniz-Filho, “Agricultural Expansion Can Menace Brazilian Protected Areas during the 21st Century,” Natureza & Conservação, Vol. 9, No. 2, 2011, pp. 208-213.

[4]   Ministério do Meio Ambiente—Sistema Nacional de Unidades de Conservação, Brasília, 2000.

[5]   Ministério do Meio Ambiente, “Biodiversidade Brasileira: Avaliação e Identificação de áreas e Aç ões Prioritárias Para Conservação, Utilização Sustentável e Repartição de Benefícios da Biodiversidade Brasileira, Secretaria de Biodiversidade e Florestas,” Brasília, 2002

[6]   D. E. Prado, “Seasonally Dry Forests of Tropical South America: From Forgotten Ecosystems to a New Phytogeographic Unit,” Edinburgh Journal of Botany, Vol. 57, No. 3, 2000, pp. 437-461.

[7]   G. A. Sanchez-Azofeifa, M. Kalacska, M. Quesada, J. C. Calvo-Alvarado, J. M. Nassar and J. P. Rodríguez, “Need for Integrated Research for a Sustainable Future in Tropical Dry Forests,” Conservation Biology, Vol. 19, No. 2, 2005, pp. 285-286. doi:10.1111/j.1523-1739.2005.s01_1.x

[8]   M. M. Espírito-Santo, A. C. Sevilha, F. C. Anaya, R. Barbosa, G. W. Fernandes, G. A. Sanchez-Azofeifa, A. Scariot, S. E. Noronha and C. A. Sampaio, “Sustainability of Tropical Dry Forests: Two Case Studies in Southeastern and Central Brazil,” Forest Ecology and Management, Vol. 258, No. 6, 2009, pp. 922-930. doi:10.1016/j.foreco.2009.01.022

[9]   P. G. Murphy and A. E. Lugo, “Dry Forests of Central America and the Caribbean,” In: S. H. Bullock, H. A. Mooney and E. Medina, Eds., Seasonally Dry Tropical Forests, Cambridge University Press, Cambridge, 1995, pp. 9-34. doi:10.1017/CBO9780511753398.002

[10]   P. G. Murphy and A. E. Lugo, “Ecology of Tropical Dry Forest,” Annual Review of Ecology and Systematics, Vol. 17, 1986, pp. 67-88. doi:10.1146/

[11]   R. A. Linares-Palomino, A. T. Oliveira-Filho and R. T. Pennington, “Neotropical Seasonally Dry Forests: Diversity, Endemism and Biogeography of Woody Plants,” In: R. Dirzo, H. S. Young, H. A. Mooney and G. Ceballos, Eds., Seasonally Dry Tropical Forests: Ecology and Conservation, Island Press, Washington DC, 2011, pp. 3-21. doi:10.5822/978-1-61091-021-7_1

[12]   L. M. Daniel and A. Scariot, “Principles of Natural Regeneration of Tropical Dry Forests for Restoration,” Restoration Ecology, Vol. 14, No. 1, 2006, pp. 11-20. doi:10.1111/j.1526-100X.2006.00100.x

[13]   H. A. Mooney, S. H. Bullock and E. Medina, “Seasonally Dry Tropical Forests,” Cambridge University Press, Cambridge, 1995, pp. 1-8. doi:10.1017/CBO9780511753398.001

[14]   L. Miles, A. C. Newton, R. S. De Fries, C. Ravilious, I. May, S. Blyth, V. Kapos and J. E. Gordon, “A Global Overview of the Conservation Status of Tropical Dry Forests,” Journal of Biogeography, Vol. 33, No. 3, 2006, pp. 491-505. doi:10.1111/j.1365-2699.2005.01424.x

[15]   D. E. Prado and P. E. Gibbs, “Patterns of Species Distributions in the Dry Seasonal Forests of South America,” Annals of the Missouri Botanical Garden, Vol. 80, No. 4, 1993, pp. 902-927. doi:10.2307/2399937

[16]   R. T. Pennington, G. P. Lewis and J. A. Ratter, “An Overview of the Plant Diversity, Biogeography and Conservation of Neotropical Savannas and Seasonally Dry Forests,” In: R. T. Pennington, G. P. Lewis and J. A. Ratter, Eds., Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation, CRC Press, London, 2006, pp. 193-211. doi:10.1201/9781420004496.ch1

[17]   A. T. Oliveira-Filho and J. A. Ratter, “Vegetation Physionomies and Woody Flora of the Cerrado Biome,” In: P. S. Oliveira and R. J. Marquis, Eds., The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, Columbia University Press, New York, 2002, pp. 91-120.

[18]   P. A. Furley and J. A. Ratter, “Soil Resources and Plant Communities of the Central Brazilian Cerrado and Their Development,” Journal of Biogeography, Vol. 15, No. 1, 1988, pp. 97-108. doi:10.2307/2845050

[19]   C. A. Klink and R. B. Machado, “Conservation of the Brazilian Cerrado,” Conservation Biology, Vol. 19, No. 3, 2005, pp. 707-713. doi:10.1111/j.1523-1739.2005.00702.x

[20]   C. A. Bianchi and S. M. Haig, “Deforestation Trends of Tropical Dry Forests in Central Brazil,” Biotropica, 2012. doi:10.1111/btp.12010

[21]   B. de la Barreda-Bautista, A. A. López-Caloca1, S. Couturier and J. L. Silván-Cárdenas, “Tropical Dry Forests in the Global Picture: The Challenge of Remote Sensing-Based Change Detection in Tropical Dry Environments, Planet Earth 2011—Global Warming Challenges and Opportunities for Policy and Practice,” In: E. Carayannis, Ed., InTech, 2011, pp. 231-257.

[22]   F. P. Werneck, G. C. Costa, G. R. Colli, D. E. Prado and J. W. Sites, “Revisiting the Historical Distribution of Seasonally Dry Tropical Forests: New Insights Based on Palaeodistribution Modelling and Palynological Evidence,” Global Ecology and Biogeography, Vol. 20, No. 2, 2011, pp. 272-288. doi:10.1111/j.1466-8238.2010.00596.x

[23]   A. T. Peterson, J. Soberon and V. Sanchez-Cordero, “Conservatism of Ecological Niches in Evolutionary Time,” Science, Vol. 285, No. 5431, 1999, pp. 1265-1267. doi:10.1126/science.285.5431.1265

[24]   C. Parmesan and G. Yohe, “A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems,” Nature, Vol. 421, 2003, pp. 37-42. doi:10.1038/nature01286

[25]   L. Hannah, G. Midgley, S. Andelman, M. Araújo, G. Hughes, E. Martinez-Meyer, R. Pearson and P. Williams, “Protected Area Needs in a Changing Climate,” Frontiers in Ecology and the Environment, Vol. 5, No. 3, 2007, pp. 131-138. doi:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

[26]   M. B. Araújo, M. Cabeza, W. Thuiller, L. Hannah and P. H. Williams, “Would Climate Change Drive Species out of Reserves? An Assessment of Existing Reserve-Selection Methods,” Global Change Biology, Vol. 10, No. 9, 2004, pp. 1618-1626. doi:10.1111/j.1365-2486.2004.00828.x

[27]   R. G. Collevatti, L. V. Terribile, M. S. Lima-Ribeiro, J. C. Nabout, G. Oliveira, T. F. Rangel, S. G. Rabelo and J. A. F. Diniz-Filho, “A Coupled Phylogeographic and Species Distribution Modeling Approach Recovers the Demographic History of a Neotropical Seasonally Dry Forest Tree Species,” Molecular Ecology, Vol. 21, No. 23, 2012, pp. 5845-5863. doi:10.1111/mec.12071

[28]   R. G. Collevatti, L. V. Terribile, M. S. Lima-Ribeiro, J. C. Nabout, G. Oliveira, T. F. Rangel and J. A. F. Diniz-Filho, “Drawbacks to Palaeodistribution Modelling: The Case of South American Seasonally Dry Forests,” Journal of Biogeography, Vol. 40, No. 2, 2013, pp. 345-358. doi:10.1111/jbi.12005

[29]   F. E. Mayle, “Assessment of the Neotropical Dry Forest Refugia Hypothesis in the Light of Palaeoecological Data and Vegetation Model Simulations,” Journal of Quaternary Science, Vol. 19, No. 7, 2004, pp. 713-720. doi:10.1002/jqs.887

[30]   R. T. Pennington, D. E. Prado and C. A. Pendry, “Neotropical Seasonally Dry Forests and Quaternary Vegetation Changes,” Journal of Biogeography, Vol. 27, No. 2, 2000, pp. 261-273. doi:10.1046/j.1365-2699.2000.00397.x

[31]   J. R. Stewart, et al., “Refugia Revisited: Individualistic Responses of Species in Space and Time,” Proceedings of the Royal Society B, Vol. 277, No. 1682, 2010, pp. 661-671. doi:10.1098/rspb.2009.1272

[32]   A. S. L. Rodrigues, S. J. Andelman, M. I. Bakar, L. Boitani, T. M. Brooks, et al., “Effectiveness of the Global Protected Area Network in Representing Species Diversity,” Nature, Vol. 428, 2004, pp. 640-643. doi:10.1038/nature02422

[33]   C. Parmesan, “Ecological and Evolutionary Responses to Recent Climate Change,” Annual Review of Ecology, Evolution and Systematics, Vol. 37, 2006, pp. 637-669. doi:10.1146/annurev.ecolsys.37.091305.110100

[34]   J. C. Svenning, C. Fløjgaard, K. A. Marske and D. Nógues-Bravo, “Applications of Species Distribution Modeling to Paleobiology,” Quaternary Science Reviews, Vol. 30, No. 21-22, 2011, pp. 21-22. doi:10.1016/j.quascirev.2011.06.012

[35]   A. T. Peterson and J. Soberon, “Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right,” Natureza & Conservação, Vol. 10, No. 2, 2012, pp. 102-107. doi:10.4322/natcon.2012.019

[36]   F. P. Werneck, C. Nogueira, G. R. Colli, J. W. Sites and G. C. Costa, “Climatic Stability in the Brazilian Cerrado: Implications for Biogeographical Connections of South American Savannas, Species Richness and Conservation in a Biodiversity Hotspot,” Journal of Biogeography, Vol. 39, No. 9, 2012, pp. 1695-1706. doi:10.1111/j.1365-2699.2012.02715.x

[37]   F. I. Woodward, M. R. Lomas and C. K. Kelly, “Global Climate and the Distribution of Plant Biomes,” Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 359, No. 1450, 2004, pp. 1465-1476. doi:10.1098/rstb.2004.1525

[38]   J. W. Williams and S. T. Jackson, “Novel Climates, No-Analog Communities, and Ecological Surprises,” Frontiers in Ecology and the Environment, Vol. 5, No. 9, 2007, pp. 475-482. doi:10.1890/070037

[39]   R. G. Collevatti, M. S. Lima-Ribeiro, A. C. Souza-Neto, A. A. Franco and L. V. Terribile, “Recovering the Demographical History of a Brazilian Cerrado Tree Species Caryocar brasiliense: Coupling Ecological Niche Modeling and Coalescent Analyses,” Natureza & Conservação, Vol. 10, No. 2, 2012, pp. 169-176. doi:10.4322/natcon.2012.024

[40]   R. G. Collevatti, M. P. C. Telles, J. C. Nabout, L. J. Chaves and T. N. Soares, “Demographical History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas,” Heredity, 2013, in Press.

[41]   L. Excoffier, M. Foll and R. J. Petit, “Genetic Consequences of Range Expansions,” Annual Review of Ecolology, Evolution and Systematics, Vol. 40, 2009, pp. 481-501. doi:10.1146/annurev.ecolsys.39.110707.173414

[42]   L. Berec, E. Angulo and F. Courchamp, “Multiple Allee Effects and Population Management,” Trends in Ecology and Evolution, Vol. 22, No. 4, 2006, pp. 185-191. doi:10.1016/j.tree.2006.12.002

[43]   G. M. Hewitt, “The Genetic Legacy of the Quaternary Ice Ages,” Nature, Vol. 405, 2000, pp. 907-913. doi:10.1038/35016000

[44]   M. B. Ashcroft, “Identifying Refugia from Climate Change,” Journal of Biogeography, Vol. 37, No. 8, 2010, pp. 1407-1413.

[45]   C. Carroll, J. R. Dunk and A. Moilanen, “Optimizing Resiliency of Reserve Networks to Climate Change: Multispecies Conservation Planning in the Pacific Northwest, USA,” Global Change Biology, Vol. 16, No. 3, 2010, pp. 891-904. doi:10.1111/j.1365-2486.2009.01965.x

[46]   C. H. Graham, J. van der Wal, S. J. Phillips, C. Moritz and S. E. Williamse, “Dynamic Refugia and Species Persistence: Tracking Spatial Shifts in Habitat through Time,” Ecography, Vol. 33, No. 6, 2010, pp. 1062-1069. doi:10.1111/j.1600-0587.2010.06430.x

[47]   L. C. Terribile, M. S. Lima-Ribeiro, M. B. Araújo, N. Bizão, R. G. Collevatti, R. Dobrovolski, A. A. Franco, F. Guilhaumon, J. S. Lima, D. M. Murakami, et al., “Areas of Climate Stability in the Brazilian Cerrado: Disentangling Uncertainties through Time,” Natureza & Conservação, Vol. 10, No. 2, 2012, pp. 152-159. doi:10.4322/natcon.2012.025

[48]   Angiosperm Phylogeny Group, “An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG III,” Botanical Journal of the Linnean Society, Vol. 161, No. 2, 2009, pp. 105-121. doi:10.1111/j.1095-8339.2009.00996.x

[49]   Jabot-Banco de Dados da Flora, “Brasileira,” Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, 2011.

[50]   R. Giovanni, L. C. Bernacci, M. F. Siqueira and F. S. Rocha, “The Real Task of Selecting Records for Ecological Niche Modeling,” Natureza & Conservação, Vol. 10, No. 2, 2012, pp. 139-144. doi:10.4322/natcon.2012.018

[51]   R. L. Wilby, S. P. Charles, E. Zorita, B. Timbal, P. Whetton and L. O. Mearns, “Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods,” IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis, 2004.

[52]   J. A. F. Diniz-Filho, L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo and M. B. Araújo, “Partitioning and Mapping Uncertainties in Ensembles of Forecasts of Species Turnover under Climate Change,” Ecography, Vol. 32, No. 6, 2009, pp. 897-906. doi:10.1111/j.1600-0587.2009.06196.x

[53]   J. Franklin, “Mapping Species Distribution: Spatial Inference and Prediction,” Cambridge University Press, Cambridge, 2009.

[54]   T. Santika, “Assessing the Effect of Prevalence on the Predictive Performance of Species Distribution Models Using Simulated Data,” Global Ecology and Biogeography, Vol. 20, No. 1, 2011, pp. 181-192. doi:10.1111/j.1466-8238.2010.00581.x

[55]   O. Allouche, A. Tsoar and R. Kadmon, “Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS),” Journal of Applied Ecology, Vol. 43, No. 6, pp. 1223-1232. doi:10.1111/j.1365-2664.2006.01214.x

[56]   N. Eldredge, “Macroevolutionary Dynamics: Species, Niches and Adaptive Peaks,” McGraw-Hill, New York, 1989.

[57]   N. Eldredge, J. N. Thompson, P. M. Brakefield, S. Gavrilets, D. Jablonski, J. B. C. Jackson, R. E. Lenski, B. S. Lieberman, M. A. McPeek and W. Miller III, “The Dynamics of Evolutionary Stasis,” Paleobiology, Vol. 31, No. 5, 2005, pp. 133-145. doi:10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2

[58]   A. M. Lister, “The Impact of Quaternary Ice Ages on Mammalian Evolution,” Philosophical Transactions of the Royal Society B, Vol. 359, No. 1442, 2004, pp. 221-241. doi:10.1098/rstb.2003.1436

[59]   J. S. Clark, C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. A. King, M. Lewis, S. Pacala, C. Prentice, E. W. Schupp, T. Webb and P. Wyckoff, “Reid’s Paradox of Rapid Plant Migration,” BioScience, Vol. 48, No. 1, 1998, pp. 13-24. doi:10.2307/1313224

[60]   P. A. Colinvaux, P. E. Oliveira and M. B. Bush, “Amazonian and Neotropical Plant Communities on Glacial Time-Scales: The Failure of the Aridity and Refuge Hypotheses,” Quaternary Science Review, Vol. 19, No. 1-5, 2000, pp. 141-169. doi:10.1016/S0277-3791(99)00059-1

[61]   A. S. Jump and J. Peñuelas, “Running to Stand Still: Adaptation and the Response of Plants to Rapid Climate Change,” Ecology Letters, Vol. 8, No. 9, 2005, pp. 1010-1020. doi:10.1111/j.1461-0248.2005.00796.x

[62]   A. A. Hoffmann and Y. Willi, “Detecting Genetic Responses to Environmental Change,” Nature, Vol. 9, 2008, pp. 421-432.

[63]   J. A. F. Diniz-Filho, J. C. Nabout, L. M. Bini, T. N. Soares, M. P. C. Telles, P. DeMarco and R. G. Collevatti, “Niche Modeling and Landscape Genetics of Caryocar brasiliense (“Pequi” Tree: Caryocariaceae) in Brazilian Cerrado: An Integrative Approach for Evaluating Central-Peripheral Population Patterns,” Tree Genetics and Genomes, Vol. 5, No. 4, 2009, pp. 617-627. doi:10.1007/s11295-009-0214-0

[64]   R. G. Collevatti, J. C. Nabout and J. A. F. Diniz-Filho, “Range Shift and Loss of Genetic Diversity under Climate Change in Caryocar brasiliense, A Neotropical Tree Species,” Tree Genetics and Genomes, Vol. 7, No. 6, 2011, pp. 1237-1247. doi:10.1007/s11295-011-0409-z

[65]   J. A. F. Diniz-Filho, R. G. Collevatti, L. J. Chaves, T. N. Soares, J. C. Nabout, T. F. Rangel, D. B. Melo, J. S. Lima and M. P. C. Telles, “Geographic Shifts in Climatically Suitable Areas and Loss of Genetic Variability in Dipteryx alata (“Baru” Tree; Fabaceae),” Genetics and Molecular Research, Vol. 11, No. 2, 2012, pp. 1618-1626. doi:10.4238/2012.June.15.11