Modeling of Objects Using Conic Splines

Show more

References

[1] J. A. Gregory, and P.K. Yuen, An arbitrary mesh network scheme using rational splines, in: T. Lyche and L.L. Schumaker (eds.), Mathematical Methods in Computer Aided Geometric Design II, Academic Press, 321-329, 1992.

[2] J. A. Gregory, M. Sarfraz, and P.K. Yuen, Curves and Surfaces for Computer Aided Design using Rational Cubic Splines, Engineering with Computers, 11:94-102, 1995.

[3] J. Hoschek, Circular splines, Computer-Aided Design, 24:611-618, 1992.

[4] M. Sarfraz, M. Hussain, and Z. Habib, Local convexity preserving rational cubic spline curves, Proceedings of IEEE Conference on Information Visualization, IV'97, London, 211-218, 1997.

[5] T. A. Foley and H. S. Ely, Interpolation with interval and point tension controls using cubic weighted Nu-splines, ACM Transactions on Mathematical Software, 13(1): 68-96, 1987.

[6] L. Piegl, and W. Tiller, The NURBS Book, Springer, 1995.

[7] Sarfraz, M., Al-Mulhem, M., Al-Ghamdi, J., and Hussain, A., Quadratic Representation to a C1 Rational Cubic Spline with Interval Shape Control, Proc International Conference on Imaging Science, Systems, and Technology (CISST'98), USA, 322-329, 1998.

[8] J. S. Kouh, and S. W. Chau, Computer-aided geometric design and panel generation for hull forms based on rational cubic Bezier curves, , Computer Aided Geometric Design, 10:537-549, 1993.

[9] V. Pratt, Techniques for conic splines, Proceedings of SIGGRAPH, 151-159, 1985.

[10] T. Pavlidis, Curve fitting with conic splines, ACM Transactions on Graphics, 1-31, 1983.

[11] M. Plass and Maureen Stone, Curve-fitting with Piecewise Parametric Cubics, Computer Graphics, 17(3): 229-239, 1983.

[12] G. Nielson, Rectangular Nu-splines, IEEE Computer Graphics and Applications, 35-40, 1986.

[13] J. A. Gregory and M. Sarfraz, A rational cubic spline with tension, Computer Aided Geometric Design, 7:1-13, 1990.

[14] T. A. Foley and H. S. Ely, Interpolation with interval and point tension controls using cubic weighted Nu-splines, ACM Transactions on Mathematical Software, 13(1): 68-96, 1987.

[15] M. Paluszny and R. Patterson, A family of tangent continous cubic algebraic splines, ACM Transactions on Graphics, 12(3):209-232, 1993.

[16] J. C. Beatty R. Bartels and K. S. Booth, Experimental comparision of splines using the shape-matching paradigm, ACM Transactions on Graphics, 12(3):179-208, 1993.

[17] B. A. Barsky, Computer Graphics and Geometric Modeling using Beta-Splines, Springer-verlag, 1986, Tokyo.

[18] T. N. T. Goodman, Properties of Beta-Splines, Journal of Approximation Theory, 44(2):132-153, 1985.

[19] B. Barsky and J. Beatty, Local control of bias and tension in Beta-Splines, ACM Transactions on Graphics, 2(2):73-77, 1983.

[20] D. Joe, Multiple knot and rational cubic beta-splines, ACM Transactions on Graphics, 8(2):100-120, 1989.

[21] T. N. T. Goodman and K. Unsworth, Manipulating shape and producing geometric continuity in beta-splines curves, IEEE Computer Graphics and Applications, 6(2):50-56, 1986.

[22] M. Sarfraz, Interactive curve modeling with applications to computer graphics, vision and image processing. Springer, 2008.

[23] M. Sarfraz, M. Hussain, M. Irshad, and A. Khalid, Approximating boundary of bitmap characters using genetic algorithm, Seventh International Conference on Computer Graphics, Imaging and Visualization (CGIV'10), 2010, 671-680.

[24] Z.R. Yahya, A.R.M Piah and A.A. Majid, G1 continuity conics for curve fitting using particle swarm optimization, E. Banissi et al. (Eds.) 15th International Conference on Information Visualization,. IV, 2011, 497-501.

[25] M. Sarfraz, S. Raza and M. Baig, Capturing image outlines using soft computing approach with conic splines, International Conference of Soft Computing and Pattern Recognition, 2009, 289-294.

[26] P. Priza, S. M. Shamsuddin and A. Ali, Differential evolution optimization for Bezier curve fitting, Seventh In-ternational Conference on Computer Graphics, Imaging and Visualization, 2010, 68-72.

[27] M. Sarfraz, M. Al-Mulhem, J. Al-Ghamdi, and A. M. Hussain, Representing a C1 Rational Quadratic Spline with Interval Shape Control, Proceedings of International Conference on Imaging Science, Systems, and Technol-ogy (CISST'98), Las Vegas, Nevada, USA, CSREA Press, USA, 322-329, 1998.