OJSTA  Vol.2 No.2 , April 2013
Microwave Synthesis, Spectral, Thermal and Antimicrobial Studies of Some Ni(II) and Cu(II) Schiff Base Complexes
ABSTRACT

Schiff bases have been synthesized by condensing nicotinamide with methyl isobutyl ketone (MKN) and 2-hydroxy acetophenone (HAN). Metal complexes have been prepared by interacting these Schiff bases with metal ions viz. Ni(II), Cu(II) 1:2 (metal:ligand) ratio. These compounds have been synthesized by conventional as well as microwave methods and characterized by elemental analysis, FT-IR, UV-Vis, FAB-mass, ESR, molar conductance, and thermal analysis. FAB mass and thermal data show degradation pattern of the complexes. The complexes are colored and stable in air at room temperature. The structure of the ligands were elucidated by spectral studies which indicate the presence of two or three coordinating groups in ligands which may be oxygen atom of the phenolic -OH group, the nitrogen atom of the azomethine (C=N) group and the oxygen atom of the carbonyl group. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus nigerand Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.


Cite this paper
A. Mishra, N. Sharma and R. Jain, "Microwave Synthesis, Spectral, Thermal and Antimicrobial Studies of Some Ni(II) and Cu(II) Schiff Base Complexes," Open Journal of Synthesis Theory and Applications, Vol. 2 No. 2, 2013, pp. 56-62. doi: 10.4236/ojsta.2013.22007.
References
[1]   S. Malik, S. Ghosh and L. Mitu, “Complexes of Some 3d-Metals with a Schiff Base Derived from 5-Acetamido1,3,4-Thiadiazole-2-Sulphonamide and Their Biological Activity,” Journal of Serbian Chemical Society, Vol. 76, No. 10, 2011, pp. 1387-1394. doi:10.2298/JSC110111118M

[2]   A. P. Mishra, A. Tiwari and R. K. Jain, “Microwave Induced Synthesis and Characterization of Semiconducting 2-Thiophenecarboxaldehyde Metal Complexes,” Advanced Material Letters, Vol. 3, No. 3, 2012, pp. 213-219. doi:10.5185/amlett.2011.9307

[3]   Z. H. Chohan, “Ni(II), Cu(II) and Zn(II) Metal Chelates with Some Thiazole Derived Schiff-Bases: Their Synthesis, Characterization and Bactericidal Properties,” Metal Based Drugs, Vol. 6, No. 2, 1999, pp. 75-80. doi:10.1155/MBD.1999.75

[4]   R. R. Coombs, M. K. Ringer, J. M. Blacquiere, J. C. Smith, J. S. Neilsen, U. Yoon-Seo, J. B. Gilbert, L. J. Leger, H. Zhang, A. M. Irving, S. L. Wheaton, C. M. Vogles, S. A. Westcott, A. Decken and F. J. Baerlocher, “Palladium(II) Schiff Base Complexes Derived from Sulfanilamides and Aminobenzothiazoles,” Transition Metal Chemistry, Vol. 30, No. 4, 2005, pp. 411-418. doi:10.1007/s11243-004-7625-4

[5]   K. Mahajan, M. Swami and R. V. Singh, “Microwave Synthesis, Spectral Studies, Antimicrobial Approach and Coordination Behavior of Antimony(III) and Bismuth(III) Compounds with Benzothiazoline,” Russian Journal of Coordination Chemistry, Vol. 35, No. 3, 2009, pp. 179-185. doi:10.1134/S1070328409030038

[6]   K. Mahajan, N. Fahmi and R. V. Singh, “Synthesis, Characterization and Antimicrobial Studies of Sb(III) Complexes of Substituted Thioimines,” Indian Journal of Chemistry, Vol. 46 A, No. 8, 2007, pp. 1221-1225.

[7]   K. Sharma, R. Singh, N. Fahmi and R. V. Singh, “Microwave Assisted Synthesis, Characterization and Biological Evaluation of Palladium and Platinum Complexes with Azomethines,” Spectrochimica Acta, Vol. 75A, No. 1, 2010, pp. 422-427. doi:10.1016/j.saa.2009.10.052

[8]   A. P. Mishra and R. K. Jain, “Microwave Synthesis and Spectral, Thermal and Antimicrobial Activities of Some Novel Transition Metal Complexes with Tridentate Schiff Base Ligands,” Journal of Serbian Chemical Society, Vol. 77, No. 8, 2012, pp. 1013-1029. doi:10.2298/JSC111001023J

[9]   R. K. Dubey, U. K. Dubey and C. M. Mishra, “Synthesis and Physicochemical Characterization of Some Schiff Base Complexes of Chromium(III),” Indian Journal of Chemistry, Vol. 47A, No. 8, 2008, pp. 1208-1212.

[10]   K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds,” 5th Editon, Part A and B, John Wiley & Sons, New York, 1998.

[11]   M. A. Neelakantan, S. S. Marriappan, J. Dharmaraja, T. Jeyakumar and K. Muthukumaran, “Spectral, XRD, SEM and Biological Activities of Transition Metal Complexes of Polydentate Ligands Containing Thiazole Moiety,” Spectrochimica Acta, Vol. 71 A, No. 2, 2008, pp. 628-635. doi:10.1016/j.saa.2008.01.023

[12]   B. S. Garg and D. N. Kumar, “Spectral Studies of Complexes of Nickel(II) with Tetradentate Schiff Bases Having N2O2 Donor Groups,” Spectrochimica Acta, Vol. 59A, No. 2, 2003, pp. 229-234. doi:10.1016/S1386-1425(02)00142-7

[13]   A. B. P. Lever, “Inorganic Electronic Spectroscopy,” 2nd Edition, Elsevier, New York, 1984.

[14]   S. Chandra, D. Jain, A. K. Sharma and P. Sharma, “Coordination Modes of a Schiff Base Pentadentate Derivative of 4-Aminoantipyrine with Cobalt(II), Nickel(II) and Copper(II) Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies,” Molecules, Vol. 14, No. 1, 2009, pp. 174-190. doi:10.3390/molecules14010174

[15]   B. Cristovao, “Spectral, Thermal and Magnetic Properties of Cu(II) and Ni(II) Complexes with Schiff Base Ligands,” Journal of Serbian Chemical Society, Vol. 76 No. 12, 2011, pp. 1639-1648. doi:10.2298/JSC101112140C

[16]   R. L. Dutta and A. Syamal, “Elements of Magneto Chemistry,” 2nd Edition, Affiliated East West Press, New Delhi, 1993.

[17]   B. J. Hathaway, “Comprehensive Coordination Chemistry,” Vol. 5, Pergamon Press, Brighton, 1987, pp. 534-540.

[18]   A. P. Mishra and M. Soni, “Synthesis, Structural and Biological Studies of Some Schiff Bases and Their Metal Complexes,” Metal Based Drug, Vol. 2008, Article ID 875410, 7 Pages. doi:10.1155/2008/875410

[19]   K. Mohanan, C. J. Athira, Y. Sindhu and M. S. Sujamol, “Synthesis, Spectroscopic Characterization, Electro-chemical Behavior and Thermal Decomposition Studies of Some Transition Metal Complexes with an Azo Derivative,” Spectrochimica Acta, Vol. 75 A, No. 1, 2010, pp. 106-112. doi:10.1016/j.saa.2009.09.050

[20]   R. K. Jain and A. P. Mishra, “Microwave Assisted Synthesis, Spectroscopic, Thermal and Antimicrobial Studies of Some Transition Metal Complexes of Schiff Base Ligands Containing Thiazole Moiety,” Jordan Journal of Chemistry, Vol. 7, No. 1, 2012, pp. 9-21.

[21]   J. T. Makode, A. R. Yaul, S. G. Bhadange and A. S. Aswar, “Physicochemical Characterization, Thermal and Electrical Conductivity Studies of Some Transition Metal Complexes of Bis-Chelating Schiff Base,” Russian Journal of Inorganic Chemistry, Vol. 54, No. 9, 2009, pp. 1372-1378. doi:10.1134/S003602360909006X

[22]   Z. H. Chohan, A. Munawar and C. T. Supuran, “Transition Metal Ion Complexes of Schiff Bases Synthesis, Characterization and Antibacterial Properties,” Metal Based Drugs, Vol. 8, No. 3, 2001, pp. 137-143. doi:10.1155/MBD.2001.137

[23]   W. G. Hanna and M. M. Moawad, “Synthesis, Characterization and Antimicrobial Activity Cobalt(II), Nickel (II) and Copper(II) Complexes with New Asymmetrical Schiff Base Lagands Derived from 7-Formyanil-Substituted Diamine-Sulphoxine and Acetylacetone,” Transition Metal Chemistry, Vol. 26, No. 6, 2001, pp. 644-651. doi:10.1023/A:1012066612090

[24]   G. B. Bagihalli, S. A. Patil and P. S. Badami, “Synthesis, Physicochemical Investigation and Biological Studies of Zn(II) Complexes with 1,2,4-Triazole Schiff Bases,” Journal of Iranian Chemical Society, Vol. 6, No. 2, 2009, pp. 259-267. doi:10.1007/BF03245833

[25]   V. P. Singh and A. Katiyar, “Synthesis, Characterization of Some Transition Metal(II) Complexes of Acetone p-Amino Acetophenone Salicyloyl Hydrazone and Their Antimicrobial Activity,” Bio Metals, Vol. 21, No. 4, 2008, pp. 491-501. doi:10.1007/s10534-008-9136-9

 
 
Top