OJSTA  Vol.2 No.2 , April 2013
Nuclear-Chemical Synthesis of 1,4-Diazine Quaternary Salts

Ion-molecular reactions of nucleogenic phenyl cations with the nucleophilic centers of 1,4-diazines have been investigated for the first time. Previously unknown tritium labeled N-phenyl quaternary derivatives of pyrazine and quinoxaline, which are potential radioactive biomarkers, have been obtained by nuclear-chemical method.

Cite this paper
N. Shchepina, V. Avrorin and G. Badun, "Nuclear-Chemical Synthesis of 1,4-Diazine Quaternary Salts," Open Journal of Synthesis Theory and Applications, Vol. 2 No. 2, 2013, pp. 51-55. doi: 10.4236/ojsta.2013.22006.
[1]   G. W. H. Cheeseman and E. S. G. Werstiuk, “Recent Advances in Pyrazine Chemistry,” Advances in Heterocyclic Chemistry, Vol. 14, 1972, pp. 99-209. doi:10.1016/S0065-2725(08)60953-8

[2]   A. Dell, D. H. Williams, H. R. Morris, G. A. Smith, J. Feeney and G. C. K. Roberts, “Structure Revision of the Antibiotic Echinomycin,” Journal of the American Chemical Society Vol. 97, No. 9, 1975, pp. 2497-2502. doi:10.1021/ja00842a029

[3]   W. Kaim, “The Versatile Chemistry of 1,4-Diazines: Organic, Inorganic and Biochemical Aspects,” Angewandte Chemie International Edition, Vol. 22, No. 3, 1983, pp. 171-258. doi:10.1002/anie.198301713

[4]   A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky, “Heterocycles in Life and Society,” 1st Edition, John Wiley & Sons Ltd., Chichester, 1997.

[5]   J. Renault, M. Baron, P. Mailliet, S,Giorgirenault, C. Paoletti and S. Cros, “Heterocyclic Quinones. 2. Quinoxaline-5,6-(and 5-8)-Diones-Potential Antitumoral Agents,” European Journal of Medicinal Chemistry, Vol. 16, No. 6, 1981, pp. 545-550.

[6]   L. E. Seitz, W. J. Suling and R. C. Reynolds, “Synthesis and Antimycobacterial Activity of Pyrazine and Quinoxaline Derivatives,” Journal of Medicinal Chemistry, Vol. 45, No. 25, 2002, pp. 5604-5606. doi:10.1021/jm020310n

[7]   A. Jaso, B. Zarranz, I. Aldana and A. Monge, “Synthesis of New Quinoxaline-2-Carboxylate 1,4-Dioxide Derivatives as Anti-Mycobacterium Tuberculosis Agents,” Journal of Medicinal Chemistry, Vol. 48, No. 6, 2005, pp. 2019-2025. doi:10.1021/jm049952w

[8]   X. Hui, J. Desrivot, C. Bories, P. M. Loiseau, X. Franck, R. Hocquemiller and B. Figadère, “Synthesis and Antiprotozoal Activity of Some New Synthetic Substituted Quinoxalines,” Bioorganic & Medicinal Chemistry Letters, Vol. 16, No. 4, 2006, pp. 815-820. doi:10.1016/j.bmcl.2005.11.025

[9]   H. Gao, E. F. Yamasaki, K. K. Chan, L. L. Shen and R. M. Snapka, “DNA Sequence Specificity for Topoisomerase II Poisoning by the Quinoxaline Anticancer Drugs XK469 and CQS,” Molecular Pharmacology, Vol. 63, No. 6, 2003, pp. 1382-1388. doi:10.1124/mol.63.6.1382

[10]   P. P. Castro, G. Zhao, G. A. Masangkay, C. Hernandez and L. M. Gutierrez-Tunstad, “Quinoxaline Excision: A Novel Approach to Triand Diquinoxaline Cavitands,” Organic Letters, Vol. 6, No. 10, 2004, pp. 333-336. doi:10.1021/ol036045x

[11]   H. Gali-Muhtasib, M. Sidani, F. Geara, A.-D. Mona, J. Al-Hmaira, M. J. Haddadin and G. Zaatari, “Quinoxaline 1,4-Dioxides Are Novel Angiogenesis Inhibitors That Potentiate Antitumor Effects of Ionizing Radiation,” International Journal of Oncology, Vol. 24, No. 5, 2004, pp. 1121-1131.

[12]   K. R. J. Thomas, M. Velusamy, J. T. Lin, C.-H. Chuen and Y.-T. Tao, “Chromophore-Labeled Quinoxaline Derivatives as Efficient Electroluminescent Materials,” Chemistry of Materials, Vol. 17, No. 7, 2005, pp. 1860-1866. doi:10.1021/cm047705a

[13]   J. Ishida, H. Yamamoto, Y. Kido, K. Kamijo, K. Murano, H. Miyake, M. Ohkubo, T. Kinoshita, M. Warizaya, A. Iwashita, K. Mihara, N. Matsuoka and K. Hattori, “Discovery of Potent and Selective PARP-1 and PARP-2 Inhibitors: SBDD Analysis via a Combination of X-Ray Structural Study and Homology Modeling,” Bioorganic & Medicinal Chemistry, Vol. 14, No. 5, 2006, pp. 1378-1390. doi:10.1016/j.bmc.2005.09.061

[14]   C. Urquiola, D. Gambino, M. Cabrera, M. L. Lavaggi, H. Cerecetto, M. Gonzalez, A. Lopez de Cerain, A. Monge, A. J. Costa-Filho and M. H. Torre, “New Copper-Based Complexes with Quinoxaline N1, N4-Dioxide Derivatives, Potential Antitumoral Agents,” Journal of Inorganic Biochemistry, Vol. 102, No. 1, 2008, pp. 119-126. doi:10.1016/j.jinorgbio.2007.07.028

[15]   H. A. Shindy and H. A. Soleiman, “Synthesis and Spectral Behaviour of Some Quinoxaline Cyanine Dyes,” Canadian Journal on Chemical Engineering & Technology, Vol. 1, No. 4, 2010, pp. 44-59.

[16]   D. P. Singh, S. K. Deivedi, S. R. Hashim and R. G. Singhal, “Synthesis and Antimicrobial Activity of Some New Quinoxaline Derivatives,” Pharmaceuticals, Vol. 3, No. 8, 2010, pp. 2416-2425. doi:10.3390/ph3082416

[17]   R. M. Rajurkar, V. A. Agrawal, S. S. Thonte and R. G. Ingale, “Heterocyclic Chemistry of Quinoxaline and Potential Activities of Quinoxaline Derivatives. A Review,” Pharmacophore, Vol. 1, No. 2, 2010, pp. 65-76.

[18]   K. Kudo, A. Momotake, Y. Kanna, Y. Nishimura and T. Arai, “Development of a Quinoxaline-Based Fluorescent Probe for Quantitative Estimation of Protein Binding Site Polarity,” Chemical Communications, Vol. 47, No. 13, 2011, pp. 3867-3869. doi:10.1039/c1cc10183h

[19]   N. C. Kakodkar, R. Peddinti, M. Kletzel, Y. Tian, L. J. Guerrero, S. D. Undevia, D. Gear, A. Chlenski, Q. Yang, H. R. Salwen and S. L. Cohn, “The Quinoxaline AntiTumor Agent (R+)XK469 Inhibits Neuroblastoma Tumor Growth,” Pediatric Blood and Cancer, Vol. 56, No. 1, 2011, pp. 164-167. doi:10.1002/pbc.22639

[20]   A. K. Patidar, M. Jeyakandan, A. K. Moobiya and G. Selvan, “Exploring Potential of Quinoxaline Moiety,” International Journal of PharmTech Research, Vol. 3, No. 1, 2011, pp. 386-392.

[21]   S. Noorulla and N. Sreenivasulu, “Antibacterial Activity of Novel Substituted Quinoxaline Heterocycles with Isoniazide,” International Journal of Research in Pharmaceutical and Biomedical Sciences, Vol. 2, No. 3, 2011, pp. 1100-1106.

[22]   S. Khaksar and F. Rostamnezhad, “A Novel One-Pot Synthesis of Quinoxaline Derivatives in Fluorinated Alcohols,” Bulletin of the Korean Chemical Society, Vol. 33, No. 8, 2012, pp. 2581-2584. doi:10.5012/bkcs.2012.33.8.2581

[23]   G. V. Sidorov and N. F. Myasoedov, “Synthesis of Tritium-Labelled Biologically Important Diazines,” Ruissian Chemical Reviews, Vol. 68, No. 3, 1999, pp. 229-240. doi:10.1070/RC1999v068n03ABEH000471

[24]   J. A. Egan, R. P. Nugent and C. N. Filer, “Tritium Labelling and Characterization of the Cognition Enhancing Drug Tacrine Using Several Precursors,” Applied Radiation and Isotopes, Vol. 57, No. 6, 2002, pp. 837-840. doi:10.1016/S0969-8043(02)00168-9

[25]   J. A. Egan and C. N. Filerga, “Tritium Labeling of the Local Anesthetic Tetracaine via a Polyhalogenated Precursor,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 258, No. 1, 2003, pp. 185-187. doi:10.1023/A:1026295101076

[26]   D. G. Ahern, A. G. Laseter and C. N. Filer, “Tritium Labelling of Several Potent Fluorinated Antipsychotic Drugs at High Specific Activity,” Applied Radiation and Isotopes, Vol. 65, No. 7, 2007, pp. 827-830. doi:10.1016/j.apradiso.2007.02.008

[27]   G. Mousseau, Q. Raffy, O. P. Thomas, M. Agez, R. Thai, J. P. Renaul, S. Pin, F. Ochsenbein, J.-C. Cintrat and B. Rousseau, “Footprinting of Protein Interactions by Tritium Labeling,” Biochemistry, Vol. 49, No. 20, 2010, pp. 4297-4299. doi:10.1021/bi100031a

[28]   G. Heinkele and T. E. Mürdter, “Synthesis of [2H3]Labelled Sulfamethoxazole and Its Main Urinary Metabolites,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 50, No. 7, 2007, pp. 656-659. doi:10.1002/jlcr.1375

[29]   D. Y. W. Lee, X. S. Ji and X. Zhang, “Synthesis of Tritium-Labeled Puerarin—A Potential Antidipsotropic Agent,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 50, No. 8, 2007, pp. 702-705. doi:10.1002/jlcr.1398

[30]   U. Pleiss, “1,4-Dihydropyridines (DHPs)—A Class of Very Potent Drugs: Syntheses of Isotopically Labeled DHP Derivatives during the Last Four Decades,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 50, No. 9-10, 2007, pp. 818-830. doi:10.1002/jlcr.1418

[31]   Y. Hong, S. J. Bonacorsi Jr., Y. Tian, S. Gong, D. Zhang, W. G. Humphreys, B. Balasubramanian, E. H. Cheesman, Z. Zhang, J. F. Castner and P. D. Crane, “Synthesis of [1, 2-3H]Ethylamine Hydrochloride and [3H]-Labeled Apadenoson for a Human ADME Study,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 51, No. 2, 2008, pp. 113-117. doi:10.1002/jlcr.1495

[32]   W. J. Wheeler and D. K. Clodfelter, “Synthesis of the Tritiated Isotopomers of Enzastaurin and Its N-DesPyridylmethyl Metabolite for Use in ADME Studies,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 51, No. 4, 2008, pp. 175-181. doi:10.1002/jlcr.1497

[33]   S.-Y. Wu and M. R. Masjedizadeh, “Synthesis of Tritium Labelled Thiorphan, an Enkephalinase Inhibitor,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 52, No. 1, 2009, pp. 23-28. doi:10.1002/jlcr.1566

[34]   C. Zona and B. La Ferla, “Synthesis of Labeled Curcumin Derivatives as Tools for in Vitro Blood Brain Barrier Trafficking Studies,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 54, No. 9, 2011, pp. 629-632. doi:10.1002/jlcr.1907

[35]   J. Malmquist, A. Bernlind, J Sandell, P Strom and M Waldman, “Tritium Labeling of a γ-Secretase Inhibitor and Two Modulators as in Vitro Imaging Agents,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 55, No. 2, 2012, pp. 80-83. doi:10.1002/jlcr.1955

[36]   W. J. S. Lockley, A. McEwen and R. Cooke, “Tritium: A Coming of Age for Drug Discovery and Development ADME Studies,” Journal of Labelled Compounds and Radiopharmaceuticals, Vol. 55, No. 7, 2012, pp. 235-257. doi:10.1002/jlcr.2928

[37]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, G. A. Alexandrova, S. E. Ukhanov, V. M. Fedoseev, S. B. Lewis and I. I. Boiko, “Preparation of N-Phenyl-Substituted Quinolinium Derivatives Labeled with Tritium by Chemonuclear Synthesis,” Chemistry of Heterocyclic Compounds, Vol. 45, No. 7, 2009, pp. 796-801. doi:10.1007/s10593-009-0359-7

[38]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, V. M. Fedoseev and S. B. Lewis, “ New Method for the Synthesis of Difficultly Available Sterically Hindered Tritium-Labeled Pyridinium Derivatives,” Chemistry of Heterocyclic Compounds, Vol. 46, No. 5, 2010, pp. 547-552. doi:10.1007/s10593-010-0544-8

[39]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, S. B. Lewis and S. E. Ukhanov, “Preparation of Fused NPhenyl-Substituted Pyridinium Derivatives by Direct Phenylation with Nucleogenic Phenyl Cations,” Chemistry of Heterocyclic Compounds, Vol. 48, No. 2, 2012, pp. 547-552. doi:10.1007/s10593-012-0990-6

[40]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, N. A. Bumagin and S. N. Shurov, “Pathways of Ion-Molecular Interactions of Nucleogenic Phenyl Cations with the Nucleophilic Centers of Picolines,” Organic and Medicinal Chemistry Letters, Vol. 2, No. 1, 2012, p. 14. doi:10.1186/2191-2858-2-14

[41]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, S. B. Lewis and S. N. Shurov, “New Way of Direct Nitrogen Atom Phenylation in Quinoline Derivatives,” ISRN Organic Chemistry, Vol. 2012, 2012, Article ID: 526867, pp. 1-4.

[42]   N. E. Shchepina, V. V. Avrorin, G. A. Badun, S. B. Lewis, V. M. Fedoseev and S. E. Ukhanov, “ The Reaction of Direct Phenylation by Nucleogenic Cations as a Method of Synthesis of Unknown or Complicated Tritium Labeled Compounds,” Moscow University Chemistry Bulletin, Vol. 64, No. 5, 2009, pp. 244-248. doi:10.3103/S0027131409050034

[43]   G. F. Duffin, “The Quaternization of Heterocyclic Compounds,” Advances in Heterocyclic Chemistry, Vol. 3, 1964, pp. 1-56. doi:10.1016/S0065-2725(08)60540-1

[44]   B. Pilarski and K. OsMialowski, “The Relationship between Electron Densities and the pKa Values in a Series of Methylpyrazines,” International Journal of Quantum Chemistry, Vol. 28, No. 2, 1985, pp. 239-244. doi:10.1002/qua.560280207

[45]   T. J. Curphey and K. S. Prasad, “Diquaternary Salts. I. Preparation and Characterization of the Diquaternary Salts of Some Diazines and Diazoles,” The Journal of Organic Chemistry, Vol. 37, No. 14. 1972. pp. 2259-2266. doi:10.1021/jo00979a012