WJNSE  Vol.3 No.1 , March 2013
C@Ag/TiO2: A Highly Efficient and Stable Photocatalyst Active under Visible Light
ABSTRACT
In this paper, preparation and characterization of C@Ag/TiO2 nanospheres compound photocatalysts was reported. C@Ag nanosphere was firstly synthesized via hydrothermal reaction, and followed by a sol-gel process to obtain the functionalized C@Ag/TiO2 nanosphere which has highly efficient visible light catalytic ability towards methyl orange (MO). The morphology of the obtained compound was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technologies. From which we can see that the as-prepared samples show a spherical structure with a diameter of approximately 200 nm, and the silver particle in core was about 10 nm. The catalytic ability of the synthesized photocatalysts under visible light irradiation shows that C@Ag/TiO2 possesses higher photocatalytic activity towards MO degradation than that of N-P25 (TiO2). Furthermore, the C@Ag/TiO2 photocatalysts exhibited excellent reusability with almost no change after five runs. Finally, the possible photocatalytic mechanism of catalyst under visible light was discussion and proposed.

Cite this paper
B. Jin, X. Zhou, X. Xu, L. Ma, Z. Wu and Y. Huang, "C@Ag/TiO2: A Highly Efficient and Stable Photocatalyst Active under Visible Light," World Journal of Nano Science and Engineering, Vol. 3 No. 1, 2013, pp. 1-5. doi: 10.4236/wjnse.2013.31001.
References
[1]   M. Shang, W. Z. Wang, S. M. Sun, J. Ren, L. Zhou and L. Zhang, “Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/ BiVO4,” The Journal of Physical Chemistry C, Vol. 113, No. 47, 2009, pp. 20228-20233. doi:10.1021/jp9067729

[2]   R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, No. 5528, 2001, pp. 269-271. doi:10.1126/science.1061051

[3]   R. Shi, J. Lin, Y. J. Wang, J. Xu and Y. F. Zhu, “Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst and Mechanism of Photocorrosion Suppression,” The Journal of Physical Chemistry C, Vol. 114, No. 14, 2010, pp. 6472-6477. doi:10.1021/jp9101866

[4]   L. Ge, M. X. Xu and H. B. Fang, “Synthesis of Novel Photocatalytic InVO4-TiO2 Thin Films with Visible Light Photoactivity,” Materials Letters, Vol. 61, No. 1, 2007, pp. 63-66. doi:10.1016/j.matlet.2006.04.006

[5]   L. Ge, M. X. Xu and H. B. Fang, “Preparation of TiO2 Thin Films from Autoclaved Sol Containing Needle-like Anatase Crystals,” Applied Surface Science, Vol. 253, No. 2, 2006, pp. 720-725. doi:10.1016/j.apsusc.2005.12.162

[6]   M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai and Y. H. Wu, “Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation,” The Journal of Physical Chemistry B, Vol. 110, No. 41, 2006, pp. 20211-20216. doi:10.1021/jp063441z

[7]   X. S. Zhou, F. Peng, H. J. Wang, H. Yu and J. Yang, “Effect of Nitrogen-Doping Temperature on the Structure and Photocatalytic Activity of the B,N-Doped TiO2,” Journal of Solid State Chemistry, Vol. 184, No. 1, 2011, pp. 134-140. doi:10.1016/j.jssc.2010.10.039

[8]   X. S. Zhou, F. Peng, H. J. Wang and H. Yu, “Boron and Nitrogen-Codoped TiO2 Nanorods: Synthesis, Characterization, and Photoelectrochemical Properties,” Journal of Solid State Chemistry, Vol. 184, No. 11, 2011, pp. 3002-3007. doi:10.1016/j.jssc.2011.09.017

[9]   M. Bowker, D. James, P. Stone, R. Bennett, N. Perkins, L. Millard, et al, “Catalysis at the Metal-Support Interface: Exemplified by the Photocatalytic Reforming of Methanol on Pd/TiO2,” Journal of Catalysis, Vol. 217, No. 2, 2003, pp. 427-433. doi:10.1016/S0021-9517(03)00074-5

[10]   Y. X. Li, G. Lu and S. Li, “Photocatalytic Oxidation of Selected Fluorenols on TiO2 Semiconductor,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 152, No. 1-3, 2002, pp. 219-228. doi:10.1016/S1010-6030(02)00210-1

[11]   L. L. Perissinotti, M. A. Brusa and M. A. Grela, “Yield of Carboxyl Anion Radicals in the Photocatalytic Degradation of Formate over TiO2 Particles,” Langmuir, Vol. 17, No. 26, 2001, pp. 8422-8427. doi:10.1021/la0155348

[12]   M. Penpolcharoen, R. Amal and M. Brungs, “Degradation of Sucrose and Nitrate over Titania Coated NanoHematite Photocatalysts,” Journal of Nanoparticle Research, Vol. 3, No. 4, 2001, pp. 289-302.

[13]   R. Jin, W. Gao, J. Chen, H. Zeng, F. Zhang, Z. Liu, et al, “Photocatalytic Reduction of Nitrate Ion in Drinking Water by Using Metal-loaded MgTiO3-TiO2 Composite Semiconductor Catalyst,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 1652, No. 2-3, 2004, pp. 585-590. doi:10.1016/S1010-6030(03)00420-9

[14]   P. Chen, W. Li, T. L. Zhou, Y. P. Jin and M. Y. Gu, “Physical and Photocatalytic Properties of Zinc Ferrite Doped Titania under Visible Light Irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 168, No. 1-2, 2004, pp. 97-101. doi:10.1016/j.jphotochem.2004.05.018

[15]   B. Xin, L. Jing, Z. Ren, B. Wang and H. Fu, “Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2,” The Journal of Physical Chemistry B, Vol. 109, No. 7, 2005, pp. 2805-2809. doi:10.1021/jp0469618

[16]   A. Romanyuk, P. Oelhafen, “Formation and Electronic Structure of TiO2-Ag Interface,” Solar Energy Materials and Solar Cells, Vol. 91, No. 12, 2007, pp. 1051-1054. doi:10.1016/j.solmat.2007.02.016

[17]   M. J. Kerker, “The Optics of Colloidal Silver: Something Old and Something New,” Colloid & Interface Science, Vol. 105, No. 2, 1985, pp. 297-314. doi:10.1016/0021-9797(85)90304-2

[18]   P. Zhang, C. L. Shao, Z. Y. Zhang, M. Y. Zhang, J. B. Mu, Z. C. Guo, Y. Y. Sun and Y. C. Liu, “Core/Shell Nanofibers of TiO2@Carbon Embedded by Ag Nanoparticles with Enhanced Visible Photocatalytic Activity,” Journal of Materials Chemistry, Vol. 21, No. 44, 2011, pp. 17746-17753. doi:10.1039/c1jm12965a

[19]   X. M. Sun and Y. D. Li, “Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-metal Nanoparticles,” Angewandte Chemie International Edition, Vol. 43, No. 5, 2004, pp. 597-601. doi:10.1002/anie.200352386

[20]   H. J. Wang, L. Yang, H. Yu and F. Peng, “A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2,” World Journal of Nano Science and Engineering, Vol. 1, No. 4, 2011, pp. 129-136.

[21]   Q. Lv, C. B. Cao, C. Li, J. T. Zhang, H. S. Zhu, X. Kong, et al., “Formation of Crystalline Carbon Nitride Powder by a Mild Solvothermal Method,” Journal of Materials Chemistry, Vol. 13, No. 6, 2003, pp. 1241-1243. doi:10.1039/b303210h

[22]   Y. Qiu and L. Gao, “Chemical Synthesis of Turbostratic Carbon Nitride, Containing C-N Crystallites, at Atmospheric Pressure,” Chemical Communications, No. 18, 2003, pp. 2378-2379. doi:10.1039/b307086g

[23]   E. Stathatos, P. Lianos, P. Falaras and A. Siokou, “Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films,” Langmuir, Vol. 16, No. 5, 2000, pp. 2398-2400. doi:10.1021/la981783t

[24]   M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, “Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst,” Chemistry of Materials, Vol. 17, No. 25, 2005, pp. 6349-6353. doi:10.1021/cm052047v

 
 
Top