Back
 JSBS  Vol.3 No.1 , March 2013
Numerical Simulation of Partial Combustion for Biomass Tar Elimination in Two-Stage Gasifier
Abstract: Biomass tar is an obstacle in biomass gasification. Partial combustion is a potential method for tar elimination. To better study the tar conversion conditions and design reasonable partial combustion reactor, 2D/3D throat models are establish to calculate the tar reduction during partial combustion using numerical method. Different number of nozzles, injection directions and injection velocities were investigated. SIMPLE algorithm was used in this calculation. The results indicated that the best performance of partial combustion was obtained when ER (equivalent ratio) = 0.34. A performance of 3 nozzles, perpendicular injection and 20 m/s injection velocity could reach lowest tar content of 3.09 wt%.
Cite this paper: Zhao, S. , Su, Y. , Wu, W. , Zhang, Y. , Wang, Y. and Luo, Y. (2013) Numerical Simulation of Partial Combustion for Biomass Tar Elimination in Two-Stage Gasifier. Journal of Sustainable Bioenergy Systems, 3, 86-92. doi: 10.4236/jsbs.2013.31012.
References

[1]   S. Anis and Z. A. Zainal, “Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 5, 2011, pp. 2355-2377. doi:10.1016/j.rser.2011.02.018

[2]   P. Brandt, E. Larsen and U. Henriksen, “High Tar Reduction in a Two-Stage Gasifier,” Energy & Fuels, Vol. 14, No. 4, 2011, pp. 816-819.

[3]   X. J. Guo, B. Xiao, X. L. Zhang, S. Y. Luo and M. Y. He, “Experimental Study on Air-Stream Gasification of Biomass Micron Fuel (BMF) in a Cyclone Gasifier,” Bioresource Technology, Vol. 100, No. 2, 2009, pp. 1003-1006. doi:10.1016/j.biortech.2008.07.007

[4]   L. Gerun, M. Paraschiv, R. Vijeu, J. Bellettre, M. Tazerout, B. G?bel and U. Henriksen, “Numerical Investigation of the Partial Oxidation in a Two-Stage Downdraft Gasifier,” Fuel, Vol. 87, No. 7, 2008, pp. 1383-1393. doi:10.1016/j.fuel.2007.07.009

[5]   D. Shin and S. Choi, “The Combustion of Simulated Waste Particles in a Fixed Bed,” Combustion and Flame, Vol. 121, No. 1, 2000, pp. 167-180. doi:10.1016/S0010-2180(99)00124-8

[6]   W. P. Jones and R. P. Lindstedt, “Global Reaction Shcemes for Hydrocarbon Combustion,” Combustion and Flame, Vol. 73, No. 3, 1988, pp. 233-249. doi:10.1016/0010-2180(88)90021-1

[7]   K. M. Bryden and K. W. Ragland, “Numerical Modeling of a Deep, Fixed Bed Combustor,” Energy & Fuels, Vol. 10, No. 2, 1996, pp. 269-275.

[8]   C. K. Westbrook and F. L. Dryer, “Chemical Kinetic Modeling of Hydrocarbon Combustion,” Progress in Energy and Combustion Science, Vol. 10, No. 1, 1984, pp. 1-57. doi:10.1016/0360-1285(84)90118-7

[9]   C. D. Blasi, “Dynamic Behaviour of Stratified Downdraft Gasifiers,” Chemical Engineering Science, Vol. 55, No. 15, 2000, pp. 2931-2944. doi:10.1016/S0009-2509(99)00562-X

[10]   J. Macak and J. Malecha, “Mathematical Model for the Gasification of Coal under Pressure,” Industrial & Engineering Chemistry Process Design and Development, Vol. 17, No. 1, 1978, pp. 92-98.

[11]   A. Jess, “Reaktionskinetische Untersuchungen zur thermischen Zersetzung von Modellkohlenwasserstoffen,” Erdol Erdgas Kohle, Vol. 111, 1995, pp. 479-484.

[12]   P. Morf, P. Hasler and T. Nussbaumer, “Mechanisms and Kinetics of Homogeneous Secondary Reactions of Tar from Continuous Pyrolysis of Wood Chips,” Fuel, Vol. 81, No. 7, 2002, pp. 843-853. doi:10.1016/S0016-2361(01)00216-2

[13]   J. Andreas, “Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels,” Fuel, Vol. 75, No. 12, 1996, pp. 1441-1448. doi:10.1016/0016-2361(96)00136-6

[14]   X. Li, J. Xu, F. Wang, J. Gao, L. Zhou and G. Yang, “Direct Oxidation of Toluene to Benzoic Acid with Molecular Oxygen over Manganese Oxides,” Catalysis Letters, Vol. 108, No. 3, 2006, pp. 137-140. doi:10.1007/s10562-006-0034-x

[15]   Y. Su, Y. Luo, Y. Chen, W. Wu and Y. Zhang, “Experimental and Numerical Investigation of Tar Destruction under Partial Oxidation Environment,” Fuel Processing Technology, Vol. 92, No. 8, 2011, pp. 1513-1524.

 
 
Top