OJAppS  Vol.3 No.1 , March 2013
Fabrication Parameter Optimization for a Multilayer Photovoltaic Cell Based on the Heterojunction: Zinc(II)-Meso-Tetrakis(4-Bromophenyl) Porphyrins/Fullerenes

The photoelectric properties of multilayer organic photovoltaic cells (OPV cells) were studied. The active organic layers consisted of a planar heterojunction between a layer of Meso-Tetrakis(4-BromoPhenyl) Zinc(II) Porphyrin (BrPhPZn) as electron donor (ED) and a layer fullerene molecules. The devices were fabricated in a high vacuum by thermal sublimation, a technique that allows multilayer devices realization easily by successive depositions, and it does not require solvents, achieving purer films with reproducible characteristics. Taking into account that the anodic contact, a key factor for cell efficiency, is favored by the inclusion of a thin anodic buffer layer (ABL), the effect on the yield after including one or two (ABL): MoO3 or MoO3-CuI layers was studied. The cell which has the best photovoltaic characteristics has a BrPhPZn (ED) thickness of only 12.5 nm. This small thickness is related with the low conductivity of this organic molecule. On the other hand, including a thin MoO3-CuI bilayer increased, such device’s efficiency in a 200%, with regard to a cell without ABL, getting for one cell ITO/MoO3-CuI/BrPhPZn/C60/Alq3/Al, with a 1.03% yield.

Cite this paper
J. Velez, M. Aguirre, P. Zamora, M. Cattin, M. Makha and J. Bernede, "Fabrication Parameter Optimization for a Multilayer Photovoltaic Cell Based on the Heterojunction: Zinc(II)-Meso-Tetrakis(4-Bromophenyl) Porphyrins/Fullerenes," Open Journal of Applied Sciences, Vol. 3 No. 1, 2013, pp. 136-144. doi: 10.4236/ojapps.2013.31019.
[1]   J. H. Schoen, C. Kloc, E. Bucher and B. Batlogg, “Efficient Organic Photovoltaic Diodes Based on Doped Pen tacene,” Nature (London, United Kingdom), Vol. 422, 2003, p. 93. doi:10.1038/nature01468

[2]   C. M. Atienza, G. Fernandez, L. Sanchez, N. Martin, I. S. Dantas, M. M. Wienk, R. A. J. Janssen, G. M. A. Rahman and D. M. Guldi, “Light Harvesting Tetrafullerene Nano array For Organic Solar Cells,” Chemical Communications, Vol. 5, 2006, pp. 514-516. doi:10.1039/b510234k

[3]   V. Lemaur, M. Steel, D. Beljonne, J.-L. Bredas and J. Cornil, “Photoinduced Charge Generation and Recombi nation Dynamics in Model Donor/Acceptor Pairs for Or ganic Solar Cell Applications: A Full Quantum-Chemical Treatment,” Journal of the American Chemical Society, Vol. 127, No. 16, 2005, pp. 6077-6086. doi:10.1021/ja042390l

[4]   K. M. Kadish, K. M. Smith and R. Guilard, “Radical Pthalocyanines and Intrinsic Semiconduction,” In: K. M. Kadish, K. M. Smith and R. Guilard, Ed., The Porphyrin Handbook, Volumes 19: Applications of Phthalocyanines, Elsevier, San Diego, 2003, p. 39.

[5]   K. Yoshino, X. H. Yin, K. Muro, S. Kiyomatsu, S. Morita, A. A. Zakhidov, et al., “Marked Enhancement of Photo conductivity and Quenching of Luminescence in Poly(2,5 dialkoxy-p-phenylene vinylene) upon C60 Doping,” Japanese Journal of Applied Physics, Vol. 32, No. 3A, 1993, pp. L357-L360. doi:10.1143/JJAP.32.L357

[6]   A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, et al., “Super-Tough Carbon-Nanotube Fibres,” Nature, Vol. 423, No. 6941, 2003, p. 703 doi:10.1038/423703a

[7]   Z. V. Vardeny, Z. H. Kafafi and J. Shinar, “Electronic Properties of Fullerene/p-Conjugated Polymer Composites,” In: Z. V. Vardeny, Z. H. Kafafi and J. Shinar, Eds., Optical & Electronic Properties of Fullerenes and Fullerene-based Materials, Marcel Dekker Inc., New York, 2000, pp. 333-365.

[8]   J. C. Bernède, L. Cattin, S. Ouro Djobo, M. Morsli, S. R. B. Kanth, S. Patil, P. Leriche, J. Roncali, A. Godoy, F. R. Diaz and M. A. Del Valle, “Influence of the Highest Occupied Molecular Orbital Energy Level of the Donor Material on the Effectiveness of the Anode Buffer Layer in Organic Solar Cells,” Physica Status Solidi (a), Vol. 208, No. 8, 2011, pp. 1989-1994. doi:10.1002/pssa.201127047

[9]   A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, “A Simplified Synthesis for Meso-Tetraphenylporphine,” The Journal of Organic Chemistry, Vol. 32, No. 15, 1967, p. 476. doi:10.1021/jo01288a053

[10]   K. Feldrapp, W. Brutting, M. Schwoerer, M. Brettreich and A. Hirsch, “Photovoltaic Effect in Blend Systems and Heterostructures of Poly(p-phenylenevinylene) and c60,” Synthetic Metals, Vol. 101, No. 1, 1999, pp. 156-157. doi:10.1016/S0379-6779(98)00696-1

[11]   C. J. Brabec, A. Cravino, G. Zerza, N. S. Sariciftci, R. Kiebooms, D. Vanderzande and J. C. Hummelen, “Photo active Blends of Poly(para-phenylenevinylene) (PPV) with Methanofullerenes from a Novel Precursor:? Photo physics and Device Performance,” Journal of Physical Chemistry B, Vol. 105, No. 8, 2001, pp. 1528-1536 doi:10.1021/jp003407z

[12]   M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal and R. A. J. Janssen, “Efficient Methano[70]fullerene/MDMO-PPV Bulk Hetero junction Photovoltaic Cells,” Angewandte Chemie, International Edition, Vol. 42, No. 29, 2003, pp. 3371-3375. doi:10.1002/anie.200351647

[13]   C. Melzer, V. V. Krasnikov and G. Hadziioannou, “Organic Donor/Acceptor Photovoltaics: The Role of C 60/Metal Interfaces,” Applied Physics Letters, Vol. 82, No. 18, 2003, pp. 3101-3103. doi:10.1063/1.1570936

[14]   C.-W. Chu, Y. Shao, V. Shrotriya and Y. Yang, “Efficient Photovoltaic Energy Conversion in Tetracene-C60 Based Heterojunctions,” Applied Physics Letters, Vol. 86, No. 24, 2005, pp. 243506-1-243506-3. doi:10.1063/1.1946184

[15]   N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,” Science, Vol. 258, No. 5087, 1992, pp. 1474-1476. doi:10.1126/science.258.5087.1474

[16]   C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen and S. Sariciftci, “Tracing Photo induced Electron Transfer Process in Conjugated Polymer/Fullerene Bulk Heterojunctions in Real Time,” Chemical Physics Letters, Vol. 340, No. 3, 2001, pp. 232-236. doi:10.1016/S0009-2614(01)00431-6

[17]   B. Anspaugh, “Space Solar Cell Performance Measurements and Characterization,” Solar Cells, Vol. 29, No. 2-3, 1990, pp. 245-256. doi:10.1016/0379-6787(90)90030-9

[18]   K. A. Emery, “Solar Simulators and I-V Measurement Methods,” Solar Cells, Vol. 18, No. 3-4, 1986, pp. 251 260. doi:10.1016/0379-6787(86)90124-9

[19]   J.-C. Bernède, D.-T. Nguyena, L. Cattina, M. Morslia, S. R. B. Kantha and S. Patil, “About the Transparent Electrode of the Organic Photovoltaic Cells,” The European Physical Journal Applied Physics, Vol. 56, No. 3, 2011, pp. 34102-34108.

[20]   A. Godoy, L. Cattin, L. Toumi, F. R. Diaz, M. A. del Valle, G. M. Soto, B. Kouskoussa, M. Morsli, K. Ben chouk, A. Khelil and J. C. Bernède, “Effects of the Buffer Layer Inserted between the Transparent Conductive Oxide Anode and the Organic Electron Donor,” Solar Energy Materials and Solar Cells, Vol. 94, No. 4, 2010, pp. 648-654. doi:10.1016/j.solmat.2009.11.003

[21]   J. C. Bernède, Y. Berredjem, L. Cattin and M. Morsli, “Improvement of Organic Solar Cells Performances Using a Zinc Oxide Anode Coated by an Ultra Thin Metallic layer,” Applied Physics Letters, Vol. 92, No. 8, 2008, Article ID: 083304. doi:10.1063/1.2888176

[22]   L. Cattin, F. Dahou, Y. Lare, M. Morsli, R. Tricot, S. Houari, A. Mokrani, K. Jondo, A. Khelil, K. Napo and J. C. Bernède, “MoO3 Surface Passivation of the Transparent Anode in Organic Solar Cells Using Ultra-Thin Films,” Journal of Applied Physics, Vol. 105, No. 3, 2009, Article ID: 034507. doi:10.1063/1.3077160

[23]   H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi and K. Seki, “Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment,” Physica Status Solidi (a), Vol. 201, No. 6, 2004, pp. 1075 1094. doi:10.1002/pssa.200404346

[24]   J. Hwang, A. Wan and A. Kahn, “Energetics of Metal Organic Interfaces: New Experiments and Assessment of the Field,” Materials Science and Engineering, Vol. R64, No. 1, 2009, pp. 1-31. doi:10.1016/j.mser.2008.12.001

[25]   C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian and M. S. Wang, “Organic Solar Cells with Remarkable Enhanced Efficiency by Using a CuI Buffer to Control the Molecular Orientation and Modify the Anode,” Applied Physics Letters, Vol. 97, No. 8, 2010, Article ID: 083305. doi:10.1063/1.3483159

[26]   P. Sullivan, T. S. Jones, A. J. Ferguson and S. Heutz, “Structural Templating as a Route to Improved Photo voltaic Performance in Copper Phthalocyanine/Fullerene (C60) Heterojunctions,” Applied Physics Letters, Vol. 91, No. 23, 2007, Article ID: 233114. doi:10.1063/1.2821229

[27]   R, Seung-Bum, F. Reinhold, J. C. Schoneboom, P. Erk and P. Peumans, “Effect of Molecular Packing on the Exciton Diffusion Length in Organic Solar Cells,” Applied Physics Letters, Vol. 91, No. 17, 2007, Article ID: 173504.

[28]   B. P. Rand, D. Cheyns, K. Vasseur, N. C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J. L. Brédas and J. Genoe, “The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocya nine/Fullerene Heterojunction,” Advanced Functional Materials, Vol. 22, No. 14, 2012, pp. 2987-2995.

[29]   H. J. Kim, H.-S. Shim, J. W. Kim, H. H. Lee and J.-J. Kim, “CuI Interlayers in Lead Phthalocyanine Thin Films Enhance Near-Infrared Light Absorption,” Applied Phy sics Letters, Vol. 100, No. 26, 100, 2012, Article ID: 263303. doi:10.1063/1.4730604

[30]   D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dia konov and J. C. Hummelen, “Temperature Dependent Characteristics of Poly(3 hexylthiophene)-Fullerene Based Heterojunction Organic Solar Cells,” Journal of Applied Physics, Vol. 93, No. 6, 2003, pp. 3376-3383. doi:10.1063/1.1545162