Existence the Solutions of Some Fifth-Order Kdv Equation by Laplace Decomposition Method

Show more

References

[1] P. G. Drazin and R. S. Johnson, “Solutions: An Introduction,” Cambridge University Press, Cambridge, 1989.
doi:10.1017/CBO9781139172059

[2] M. Khan, “Application of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations,” World Applied Sciences Journal, Vol. 9, 2010, pp. 13-19.

[3] G. Adomian, “A Review of the Decomposition Method in Applied Mathematics,” Journal of Mathematical Analysis and Applications, Vol. 135, No. 2, 1988, pp. 501-544.

[4] X. Q. Liu and C. L. Bai, “Exact Solutions of Some FifthOrder Nonlinear Equations,” Applied Mathematics—A Journal of Chinese Universities, Vol. 15, No. 1, 2000, pp. 28-32.

[5] E. J. Parkes and B. R. Duffy, “An Automated Tanh-Function Method for Finding Solitary Wave Solutions to NonLinear Evolution Equations,” Computer Physics Communications, Vol. 98, No. 3, 1996, pp. 288-300.
doi:10.1016/0010-4655(96)00104-X

[6] T. R. Akylas and T.-S. Yang, “On Short-Scale Oscillatory Tails of Long-Wave Disturbances,” Studies in Applied Mathematics, Vol. 94, 1995, pp. 1-20.

[7] J. K. Hunter and J. Scheurle, “Existence of Perturbed Solitary Wave Solutions to a Model Equation for Water Waves,” Physica D: Nonlinear Phenomena, Vol. 32, No. 2, 1988, pp. 253-268. doi:10.1016/0167-2789(88)90054-1

[8] J. P. Body, “Weak Non-Local Solitons for CapillaryGravity Waves: Fifth-Order Korteweg-de Vries Equation,” Physica D, Vol. 48, 1991, pp. 129-146.

[9] J. T. Beale, “Exact Solitary Waves with Capillary Ripples at Infinity,” Communications Pure Applied Mathematics, Vol. 44, 1991, pp. 211-247.

[10] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer Academic Publishers, Boston, 1994.

[11] Y. Cherruault, “Convergence of Adomian’s Method,” Kybernetics, Vol. 18, 1989, pp. 31-38.

[12] A. Repaci, “Nonlinear Dynamical Systems: On the Accuracy of Adomian’s Decomposition Method,” Applied Mathematics Letters, Vol. 3, No. 4, 1990, pp. 35-39.

[13] Y. Cherruault and G. Adomian, “Decomposition Methods: A New Proof of Convergence,” Mathematical and Computer Modelling, Vol. 18, No. 12, 1993, pp. 103-106.
doi:10.1016/0895-7177(93)90233-O

[14] A. M. Wazwaz, “A Reliable Modification of Adomian Decomposition Method,” Applied Mathematics and Computation, Vol. 102, No. 1, 1999, pp. 77-86.
doi:10.1016/S0096-3003(98)10024-3

[15] M. Hussain, “Modified Laplace Decomposition Method,” Applied Mathematical Science, Vol. 4, No. 38, 2010, pp. 1769-1783.

[16] G. Adomian and R. Rach, “Noise Terms in Decomposition Solution Series,” Applied Mathematics and Computation, Vol. 24, No. 11, 1992, pp. 61-64.

[17] A. M. Wazwaz, “Necessary Conditions for the Appearance of Noise Terms in Decomposition Solution Series,” Applied Mathematics and Computation, Vol. 81, No. 2-3, 1997, pp. 265-274.

[18] S. Wolfram, “Mathematica for Windows,” Wolfram Research Inc., Champaign, 1993.