RETRACTED: Wavelet Packet Frames on a Half Line Using the Walsh-Fourier Transform

Show more

References

[1] R. J. Duffin and A. C. Schaeffer, “A Class of Nonharmonic Fourier Series,” Transactions of the American Mathematical Society, Vol. 72, 1952, pp. 341-366.
doi:10.1090/S0002-9947-1952-0047179-6

[2] I. Daubechies, A. Grossman and Y. Meyer, “Painless Nonorthogonal Expansions,” Journal of Mathematical Physics, Vol. 27, No. 5, 1986, pp. 1271-1283.
doi:10.1063/1.527388

[3] S. Dahlke, “Multiresolution Analysis and Wavelets on Locally Compact Abelian Groups,” In: P. J. Laurent, A. Lemehaute and L. L. Schumaker, Eds., Wavelets, Images and Surface Fitting, A. K. Peters Wellesley, Wellesley, 1994, pp. 141-156.

[4] M. Holschneider, “Wavelet Analysis over Abelian Groups,” Applied and Computational Harmonic Analysis, Vol. 2, No. 1, 1995, pp. 52-60. doi:10.1006/acha.1995.1004

[5] M. Papadakis, “On the Multiresolution Analysis on Abstract Hilbert Spaces,” The Bulletin of the Greek Mathematical Society, Vol. 40, No. 40, 1998, pp. 79-82.

[6] W. C. Lang, “Orthogonal Wavelets on the Cantor Dyadic Group,” SIAM Journal on Mathematical Analysis, Vol. 27, No. 1, 1996, pp. 305-312.
doi:10.1137/S0036141093248049

[7] W. C. Lang, “Fractals Multiwavelets Related to the Cantor Dyadic Group,” International Journal of Mathematics and Mathematical Sciences, Vol. 21, No. 2, 1998, pp. 307-317. doi:10.1155/S0161171298000428

[8] W. C. Lang, “Wavelets Analysis on the Cantor Dyadic Group,” The Journal of Analysis and Its Applications, Vol. 24, No. 3, 1998, pp. 533-544.

[9] I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.

[10] C. K. Chui and X. L. Shi, “Inequalities of LittlewoodPaley Type for Frames and Wavelets,” SIAM Journal on Mathematical Analysis, Vol. 24, No. 1, 1993, pp. 263-277.
doi:10.1137/0524017

[11] P. G. Casazza and O. Christensen, “Weyl-Heisenberg Frames for Subspaces of ,” Proceedings of the Mathematical Society, Vol. 129, No. 1, 2001, pp. 145-154.

[12] O. Christensen, “Frames, Riesz Bases and Discrete Gabor/Wavelet Expansions,” The Bulletin of the American Mathematical Society, Vol. 38, 2001, pp. 273-291.
doi:10.1090/S0273-0979-01-00903-X

[13] O. Christensen, “An Introduction to Frames and Riesz Bases,” Birkhauser, Boston, 2003.

[14] V. Yu. Protasov and Yu. A. Farkov, “Dyadic Wavelets and Refinable Functions on a Half Line,” Sbornik: Mathematics, Vol. 197, No. 10, 2006, pp. 1529-1558.
doi:10.1070/SM2006v197n10ABEH003811

[15] Yu. A. Farkov, “On Wavelets Related to Walsh Series,” Journal of Approximation Theory, Vol. 161, No. 1, 2009, pp. 259-279. doi:10.1016/j.jat.2008.10.003

[16] F. A. Shah and L. Debnath, “Dyadic Wavelet Frames on a Half-Line Using the Walsh-Fourier Transform,” Integral Transforms and Special Functions, Vol. 22, No. 7, 2011, pp. 477-486. doi:10.1080/10652469.2010.520528

[17] M. K. Ahmad and J. Iqbal, “On Wavelet Packet Frames,” Journal of Concrete and Applicable Mathematics, Vol. 6, No. 3, 2008, pp. 279-286.

[18] M. K. Ahmad and J. Iqbal, “Vector-Valued Weyl-Heisenberg Wavelet Frame,” International Journal of Wavelets, Multiresolution and Information Processing, Vol. 7, No. 5, 2009, pp. 553-565.
doi:10.1142/S0219691309003112

[19] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, “Walsh Series and Transforms: Theory and Applications, Nauka, Moscow, 1987,” English Translation, Kluwer, Dordrecht, 1991.

[20] L. Debnath, “Wavelet Transform and Their Applications,” Birkhauser Verlag, Boston, 2002.
doi:10.1007/978-1-4612-0097-0

[21] F. Schipp, W. R. Wade and P. Simon, “Walsh Series: An Introduction to Dyadic Harmonic Analysis,” Adam Hilger, Bristol and New York, 1990.

[22] M. V. Wickerhauser, “Acoustic Signal Compression with Wavelet Packets,” In: C. K. Chui, Ed., Wavelets: A Tutorial in Theory and Applications, pp. 679-700, 1991.

[23] M. H. Tailbelson, “Fourier Analysis on Local Fields,” Princeton University Press, Princeton, 1975.