RETRACTED: *Wavelet Packet Frames on a Half Line Using the Walsh-Fourier Transform*

Show more

The paper does not meet the standards of "American Journal of Computational Mathematics".

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Hari M. Srivastava (EiC of AJCM)

The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".

References

[1] R. J. Duffin and A. C. Schaeffer, “A Class of Nonharmonic Fourier Series,” Transactions of the American Mathematical Society, Vol. 72, 1952, pp. 341-366.
doi:10.1090/S0002-9947-1952-0047179-6

[2] I. Daubechies, A. Grossman and Y. Meyer, “Painless Nonorthogonal Expansions,” Journal of Mathematical Physics, Vol. 27, No. 5, 1986, pp. 1271-1283.
doi:10.1063/1.527388

[3] S. Dahlke, “Multiresolution Analysis and Wavelets on Locally Compact Abelian Groups,” In: P. J. Laurent, A. Lemehaute and L. L. Schumaker, Eds., Wavelets, Images and Surface Fitting, A. K. Peters Wellesley, Wellesley, 1994, pp. 141-156.

[4] M. Holschneider, “Wavelet Analysis over Abelian Groups,” Applied and Computational Harmonic Analysis, Vol. 2, No. 1, 1995, pp. 52-60. doi:10.1006/acha.1995.1004

[5] M. Papadakis, “On the Multiresolution Analysis on Abstract Hilbert Spaces,” The Bulletin of the Greek Mathematical Society, Vol. 40, No. 40, 1998, pp. 79-82.

[6] W. C. Lang, “Orthogonal Wavelets on the Cantor Dyadic Group,” SIAM Journal on Mathematical Analysis, Vol. 27, No. 1, 1996, pp. 305-312.
doi:10.1137/S0036141093248049

[7] W. C. Lang, “Fractals Multiwavelets Related to the Cantor Dyadic Group,” International Journal of Mathematics and Mathematical Sciences, Vol. 21, No. 2, 1998, pp. 307-317. doi:10.1155/S0161171298000428

[8] W. C. Lang, “Wavelets Analysis on the Cantor Dyadic Group,” The Journal of Analysis and Its Applications, Vol. 24, No. 3, 1998, pp. 533-544.

[9] I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.

[10] C. K. Chui and X. L. Shi, “Inequalities of LittlewoodPaley Type for Frames and Wavelets,” SIAM Journal on Mathematical Analysis, Vol. 24, No. 1, 1993, pp. 263-277.
doi:10.1137/0524017

[11] P. G. Casazza and O. Christensen, “Weyl-Heisenberg Frames for Subspaces of ,” Proceedings of the Mathematical Society, Vol. 129, No. 1, 2001, pp. 145-154.

[12] O. Christensen, “Frames, Riesz Bases and Discrete Gabor/Wavelet Expansions,” The Bulletin of the American Mathematical Society, Vol. 38, 2001, pp. 273-291.
doi:10.1090/S0273-0979-01-00903-X

[13] O. Christensen, “An Introduction to Frames and Riesz Bases,” Birkhauser, Boston, 2003.

[14] V. Yu. Protasov and Yu. A. Farkov, “Dyadic Wavelets and Refinable Functions on a Half Line,” Sbornik: Mathematics, Vol. 197, No. 10, 2006, pp. 1529-1558.
doi:10.1070/SM2006v197n10ABEH003811

[15] Yu. A. Farkov, “On Wavelets Related to Walsh Series,” Journal of Approximation Theory, Vol. 161, No. 1, 2009, pp. 259-279. doi:10.1016/j.jat.2008.10.003

[16] F. A. Shah and L. Debnath, “Dyadic Wavelet Frames on a Half-Line Using the Walsh-Fourier Transform,” Integral Transforms and Special Functions, Vol. 22, No. 7, 2011, pp. 477-486. doi:10.1080/10652469.2010.520528

[17] M. K. Ahmad and J. Iqbal, “On Wavelet Packet Frames,” Journal of Concrete and Applicable Mathematics, Vol. 6, No. 3, 2008, pp. 279-286.

[18] M. K. Ahmad and J. Iqbal, “Vector-Valued Weyl-Heisenberg Wavelet Frame,” International Journal of Wavelets, Multiresolution and Information Processing, Vol. 7, No. 5, 2009, pp. 553-565.
doi:10.1142/S0219691309003112

[19] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, “Walsh Series and Transforms: Theory and Applications, Nauka, Moscow, 1987,” English Translation, Kluwer, Dordrecht, 1991.

[20] L. Debnath, “Wavelet Transform and Their Applications,” Birkhauser Verlag, Boston, 2002.
doi:10.1007/978-1-4612-0097-0

[21] F. Schipp, W. R. Wade and P. Simon, “Walsh Series: An Introduction to Dyadic Harmonic Analysis,” Adam Hilger, Bristol and New York, 1990.

[22] M. V. Wickerhauser, “Acoustic Signal Compression with Wavelet Packets,” In: C. K. Chui, Ed., Wavelets: A Tutorial in Theory and Applications, pp. 679-700, 1991.

[23] M. H. Tailbelson, “Fourier Analysis on Local Fields,” Princeton University Press, Princeton, 1975.