Effect of Weight Function in Nonlinear Part on Global Solvability of Cauchy Problem for Semi-Linear Hyperbolic Equations

Show more

In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.

References

[1] A. B. Aliev and A. A. Kazymov, “Global Weak Solutions of the Cauchy Problem for Semi-Linear Pseudo-Hyperbolic Equations,” Differential Equations, Vol. 45, No. 2, 2009, pp. 1-11.

[2] A. B. Aliev and B. H. Lichaei, “Existence and Non-Existence of Global Solutions of the Cauchy Problem for Higher Semi-Linear Pseudo-Hyperbolic Equations,” Nonlinear Analysis, Theory, Methods and Applications, Vol. 72, No. 7-8, 2010, pp. 3275-3288.

[3] B. R. Ikehata, Y. Miataka and Y. Nakatake, “Decay Estimates of Solutions of Dissipative Wave Equations in R_{n} with Lower Power Nonlinearities,” Journal of the Mathematical Society of Japan, Vol. 56, No. 2, 2004, pp. 365- 373.

[4] T. Li and Y. Zhou, “Breakdown of Solutions u+u_{2}=|u|^{1+α},” Discrete and Continuous Dynamical Systems, Vol. 1, No. 4, 1995, pp. 503-520. doi:10.3934/dcds.1995.1.503

[5] I. E. Segal, “Dispersion for Non-Linear Realistic Equations II,” Journal of the American Mathematical Society, Vol. 4, No. 16, 1968, pp. 459-497.

[6] Q. S. Zhag, “A Blow-Up Result for a Nonlinear Wave Equation with Damping,” The Critical Case, dans Comptesrendus de l’Académie des Sciences de Paris, Serie I, Vol. 333, 2001, pp. 109-114.

[7] G. Todorova and B. Yordanov, “Critical Exponent for a Nonlinear Wave Equation with Damping,” dans Comptes rendus de l’Académie des Sciences de Paris, Serie I, Vol. 330, 2000, pp. 557-562.

[8] E. Mitidieri and S. I. Pokhozhaev, “A Priori Estimates and the Absence of Solutions of Nonlinear Partial Differential Equations and Inequalities,” Steklov Mathematical Institute Seminar, Vol. 234, 2001, pp. 1-384.

[9] A. B. Aliev, “Solvability in the Large of the Cauchy Problem for Quasilinear Equations of Hyperbolic Type,” Doklady Akademii Nauk SSSR, Vol. 240, No. 2, 1978, pp. 249-252.

[10] O. V. Besov, V. P. Ilin and S. M. Nikolski, “Integral Representation of Functions and Embedding Theorem,” V.H. Wilson and Sons, Washington DC, 1978.