Ex Post Efficient Set Mathematics

Show more

References

[1] H. Markowitz, “Portfolio Selection,” Journal of Finance, Vol. 7, No. 1, 1952, pp. 77-91.

[2] C. M. Stein, “Estimation of the Mean of a Multivariate Normal Distribution,” Annals of Statistics, Vol. 9, No. 6, 1981, pp. 1135-1151. doi:10.1214/aos/1176345632

[3] J. S. Liu, “Siegel’s Formula via Stein’s Identities,” Statistics and Probability Letters, Vol. 21, No. 3, 1994, pp. 247-251. doi:10.1016/0167-7152(94)90121-X

[4] Z. Landsman and J. Neslehová, “Stein’s Lemma for Elliptical Random Vectors,” Journal of Multivariate Analysis, Vol. 99, No. 5, 2008, pp. 912-927.
doi:10.1016/j.jmva.2007.05.006

[5] M. J. Best and R. R. Grauer, “On the Sensitivity of MeanVariance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results,” Review of Financial Studies, Vol. 4, No. 2, 1991, pp. 315-342.
doi:10.1093/rfs/4.2.315

[6] V. Chopra, and W. T. Ziemba, “The Effect of Errors in Means, Variances and Covariances on Optimal Portfolio Choice,” Journal of Portfolio Management, Vol. 19, No. 2, 1993, pp. 6-11. doi:10.3905/jpm.1993.409440

[7] C. J. Adcock, “Predicting Portfolio Returns Using The Distributions of Efficient Set Portfolios,” In S. E. Satchell and A Scowcroft, Eds., Advances in Portfolio Construction and Implementation, Butterworth Heinemann, Oxford, 2003, pp. 342-355.

[8] R. Kan and G. Zhou, “Optimal Portfolio Choice with Parameter Uncertainty,” Journal of Financial and Quantitative Analysis, Vol. 42, No. 3, 2007, pp. 621-656.
doi:10.1017/S0022109000004129

[9] R. O. Michaud, “The Markowitz Optimization Enigma: Is Optimized Optimal?” Financial Analysts Journal, 1989, pp. 31-42.

[10] R. O. Michaud, “Efficient Asset Management,” Harvard Business School Press, Boston, 1998.

[11] V. Bawa, S. J. Brown and R. Klein, “Estimation Risk and Optimal Portfolio Choice,” Studies in Bayesian Econometrics, North Holland, Amsterdam, Vol. 3, 1979.

[12] J. D. Jobson and B. Korkie, “Estimation for Markowitz Efficient Portfolios,” Journal of the American Statistical Association, Vol. 75, No. 371, 1980, pp. 544-554.
doi:10.1080/01621459.1980.10477507

[13] R. Merton, “An Analytical Derivation of the Efficient Portfolio Frontier,” Journal of Financial and Quantitative Analysis, Vol. 7, No. 4, 1972, pp. 1851-1872.
doi:10.2307/2329621

[14] M. R. Gibbons, S. A. Ross and J. Shanken, “A Test of the Efficiency of a Given Portfolio,” Econometrica, Vol. 57, No. 5, 1989, pp. 1121-1152. doi:10.2307/1913625

[15] G. Huberman and S. Kandel, “Mean-Variance Spanning,” The Journal of Finance, Vol. 42, No. 4, 1987, pp. 873-888. doi:10.1111/j.1540-6261.1987.tb03917.x

[16] M. Britten-Jones, “The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights”. Journal of Finance, Vol. 54, No. 2, 1999, pp. 655-672.
doi:10.1111/0022-1082.00120

[17] R. Kan, and D. R. Smith, “The Distribution of the Sample Minimum-Variance Frontier,” Management Science, Vol. 54, No. 7, 2008, pp. 1364-1360.
doi:10.1287/mnsc.1070.0852

[18] J. Knight, and S. E. Satchell, “Exact Properties of Measures of Optimal Investment for Benchmarked Portfolios,” Quantitative Finance, Vol. 10, No. 5, 2010, pp. 495-502.
doi:10.1080/14697680903061412

[19] T. Bodnar, and W. Schmid, “A Test for the Weights of the Global Minimum Variance Portfolio in an Elliptical Model,” Metrika, Vol. 67, No. 2, 2008, pp. 127-143.
doi:10.1007/s00184-007-0126-7

[20] T. Bodnar and W. Schmid “Estimation of Optimal Portfolio Compositions for Gaussian Returns,” Statistics & Decisions, Vol. 26, No. 3, 2008, pp. 179-201.
doi:10.1524/stnd.2008.0918

[21] T. Bodnar and W. Schmid “Econometrical Analysis of the Sample Efficient Frontier,” The European Journal of Finance, Vol. 15, No. 3, 2009, pp. 317-335.
doi:10.1080/13518470802423478

[22] G. H. Hillier and S. E. Satchell, “Some Exact Results for Efficient Portfolios with Given Returns,” In S. E. Satchell and A Scowcroft, Eds., Advances in Portfolio Construction and Implementation, Butterworth Heinemann, Oxford, 2003, pp. 310-325.

[23] Y. Okhrin and W. Schmid, “Distributional Properties of Portfolio Weights,” Journal of Econometrics, Vol. 134, No. 1, 2006, pp. 235-256.
doi:10.1016/j.jeconom.2005.06.022

[24] C. J. Adcock, “The Statistical Properties of Optimised Portfolios,” Proceedings of the 1996 Chemical Bank— Imperial College Conference on Forecasting Financial Markets, London, 1996.

[25] C. J. Adcock, “Dynamic Control of Risk in Optimised Portfolios,” The IMA Journal of Mathematics Applied in Business and Industry, Vol. 11, No. 1, 2000, pp. 27-138.

[26] M. Mathai and S. B. Prevost, “Quadratic Forms in Random Variables,” Springer, Heidelberg, 1992.

[27] C. J. Adcock, M. C. Cortez, M. R. Armada and F. Silva “Time Varying Betas and the Unconditional Distribution of Asset Returns,” Quantitative Finance, Vol. 12, No. 6, 2012, pp. 951-967. doi:10.1080/14697688.2010.544667

[28] J. Tu and G. Zhou “Data-Generating Process Uncertainty: What Difference Does It Make in Portfolio Decisions?” Journal of Financial Economics, Vol. 72, No. 2, 2004, pp. 385-421. doi:10.1016/j.jfineco.2003.05.003

[29] J. P. Imhof, “Computing the Distribution of Quadratic Forms in Normal Variables,” Biometrika, Vol. 48, No. 3, 1961, pp. 419-426.

[30] C.-F. Huang and R. H. Litzenberger, “Foundations for Financial Economics,” Prentice Hall, Englewood Cliffs, 1988.

[31] Cedilnik, K Kosmelj and A. Blejec, “The Distribution of the Ratio of Jointly Normal Variables,” Metodoloski Zvezki, Vol. 1, No. 1, 2004, pp. 99-108.