Quantum Mechanics of Complex Octic Potential in One Dimension

Ram Mehar Singh^{*}

Show more

References

[1] T. J. Hollowood, “Solitons in Affine Toda Theories,” Nuclear Physics B, Vol. 384, No. 3, 1992, pp. 523-540.
doi:10.1016/0550-3213(92)90579-Z

[2] D. R. Nelson and N. M. Shnerb, “Non-Hermitian Localization and Population Biology,” Physical Review E, Vol. 58, No. 2, 1998, pp. 1383-1403.

[3] N. Hatano and D. R. Nelson, “Localization Transitions in Non-Hermitian Quantum Mechanics,” Physical Review Letters, Vol. 77, No. 3, 1996, pp. 570-573.

[4] N. Hatano and D. R. Nelson, “Vortex Pinning and Non-Hermitian Quantum Mechanics,” Physical Review B, Vol. 56, No. 14, 1997, pp. 8651-8673.

[5] H. Feshbach, C. E. Porter and V. F. Weisskopf, “Model for Nuclear Reactions with Neutrons,” Physical Review Letters, Vol. 96, No. 2, 1954, pp. 448-464.

[6] F. Verheest, “Nonlinear Wave Interaction in a Complex Hamiltonian Formalism,” Journal of Physics A: Mathematical and General, Vol. 20, No. 1, 1987, pp. 103-110.
doi:10.1088/0305-4470/20/1/019

[7] N. N. Rao, B. Buti and S. B. Khadkikar, “Hamiltonian Systems with Indefinite Kinetic Energy,” Pramana— Journal of Physics, Vol. 27, No. 4, 1986, pp. 497-505.
doi:10.1007/BF02846877

[8] R. S. Kaushal and H. J. Korsch, “Some Remarks on Complex Hamiltonian Systems,” Physics Letters A, Vol. 276, No. 1-4, 2000, pp. 47-51.

[9] R. S. Kaushal and S. Singh, “Construction of Complex Invariants for Classical Dynamical Systems,” Annals of Physics (New York), Vol. 288, No. 2, 2001, pp. 253-276.

[10] C. M. Bender and A. Turbiner, “Analytic Continuation of Eigenvalue Problems,” Physics Letters A, Vol. 173, No. 6, 1993, pp. 442-446. doi:10.1016/0375-9601(93)90153-Q

[11] C. M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT-Symmetry,” Physical Review Letters, Vol. 80, No. 24, 1998, pp. 5243-5246.

[12] A. L. Xavier Jr. and M. A. M. de Aguiar, “Complex Trajectories in the Quartic Oscillator and Its Semiclassical Coherent-State,” Annals of Physics (New York), Vol. 252, No. 2, 1996, pp. 458-476. doi:10.1006/aphy.1996.0141

[13] A. L. Xavier Jr. and M. A. M. de Aguiar, “Phase Space Approach to the Tunnel Effect: A New Semiclassical Traversal Time,” Physical Review Letters, Vol. 79, No. 18, 1997, pp. 3323-3326.

[14] R. S. Kaushal, “On the Quantum Mechanics of Complex Hamiltonian Systems in One Dimension,” Journal of Physics A: Mathematical and General, Vol. 34, No. 49, 2001, pp. L709-L714. doi:10.1088/0305-4470/34/49/104

[15] R. S. Kaushal and Parthasarthi, “Quantum Mechanics of Complex Hamiltonian Systems in One Dimension,” Journal of Physics A: Mathematical and General, Vol. 35, No. 41, 2002, pp. 8743-8761.
doi:10.1088/0305-4470/35/41/308

[16] Parthasarthi and R. S. Kaushal, “Quantum Mechanics of Complex Sextic Potential in One Dimension,” Physica Scripta, Vol. 68, No. 2, 2003, pp. 115-127.