Synchrotron-Based Data-Constrained Modeling Analysis of Microscopic Mineral Distributions in Limestone

Author(s)
Yudan Wang,
Yushuang Yang^{*},
Tiqiao Xiao^{*},
Keyu Liu,
Ben Clennell,
Guoqiang Zhang,
Haipeng Wang

Affiliation(s)

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.

Materials Science & Engineering, Commonwealth Scientific and Industrial Research Organization, Clayton, Australia.

Earth Science & Resource Engineering, Commonwealth Scientific and Industrial Research Organization, Bentley, Australia Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China.

Earth Science & Resource Engineering, Commonwealth Scientific and Industrial Research Organization, Bentley, Australia.

College of Physics & Electronics Engineering, Shanxi University, Taiyuan, China.

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.

Materials Science & Engineering, Commonwealth Scientific and Industrial Research Organization, Clayton, Australia.

Earth Science & Resource Engineering, Commonwealth Scientific and Industrial Research Organization, Bentley, Australia Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China.

Earth Science & Resource Engineering, Commonwealth Scientific and Industrial Research Organization, Bentley, Australia.

College of Physics & Electronics Engineering, Shanxi University, Taiyuan, China.

ABSTRACT

Three dimensional (3D) microscopic distributions of dolomite and calcite in a limestone sample have been analyzed with a data-constrained modeling (DCM) technique using synchrotron radiation-based multi-energy X-ray computed tomography (CT) data as constraints. In order to optimize the experimental parameters, X-ray CT simulations and DCM analysis of a numerical phantom consisting of calcite (CaCO_{3}) and dolomite (CaMg(CO_{3})_{2}) have been used to investigate the effects on the predicted results in relation to noise, X-ray energy and sample-to-detector distance (SDD). The simulation results indicate that the optimal X-ray energies are 25 and 35 keVs, and the SDD is 10 mm. The high resolution 3D distributions of mineral phases of a natural limestone have been obtained. The results are useful for quantitative understanding of mineral, porosity, and physical property distributions in relation to oil and gas reservoirs hosted in carbonate rocks, which account for more than half of the world’s conventional hydrocarbon resources. The case studied is also instructive for the applicability of the DCM methods for other types of composite materials with modest atomic number contrasts between the mineral phases.

Cite this paper

Y. Wang, Y. Yang, T. Xiao, K. Liu, B. Clennell, G. Zhang and H. Wang, "Synchrotron-Based Data-Constrained Modeling Analysis of Microscopic Mineral Distributions in Limestone,"*International Journal of Geosciences*, Vol. 4 No. 2, 2013, pp. 344-351. doi: 10.4236/ijg.2013.42032.

Y. Wang, Y. Yang, T. Xiao, K. Liu, B. Clennell, G. Zhang and H. Wang, "Synchrotron-Based Data-Constrained Modeling Analysis of Microscopic Mineral Distributions in Limestone,"

References

[1] H. Andersson and C. Persson, “In-Situ SEM Study of Fatigue Crack Growth Behaviour in IN718,” International Journal of Fatigue, Vol. 26, No. 3, 2004, pp. 211-219. doi:10.1016/S0142-1123(03)00172-5

[2] C. Motz and R. Pippan, “Fracture Behaviour and Fracture Toughness of Ductile Closed-Cell Metallic Foams,” Acta Materialia, Vol. 50, No. 8, 2002, pp. 2013-2033. doi:10.1016/S1359-6454(02)00047-2

[3] L. H. Qian, H. Toda, S. Morita, T. Kobayashi and Z. G. Wang, “In-Situ Observations of Fracture Processes in 0.6 μm and 9.5 μm SiCP/6061Al Composites,” Materials Transactions, Vol. 46, No. 1, 2005, pp. 34-41. doi:10.2320/matertrans.46.34

[4] D. N. Bryon, M. P. Atherton and R. H. Hunter, “The Interpretation of Granitic Textures from Serial Thin Sectioning, Image-Analysis and 3-Dimensional Reconstruction,” Mineralogical Magazine, Vol. 59, No. 395, 1995, pp. 203-211. doi:10.1180/minmag.1995.059.395.05

[5] R. Marschallinger, “Correction of Geometric Errors Associated with the 3-D Reconstruction of Geological Materials by Precision Serial Lapping,” Mineralogical Magazine, Vol. 62, No. 6, 1998, pp. 783-792. doi:10.1180/002646198548160

[6] A. Mock and D. A. Jerram, “Crystal Size Distributions (CSD) in Three Dimensions: Insights from the 3D Reconstruction of a Highly Porphyritic Rhyolite,” Journal of Petrology, Vol. 46, No. 8, 2005, pp. 1525-1541. doi:10.1093/petrology/egi024

[7] L. Qian, H. Toda, K. Uesugi, M. Kobayashi and T. Kobayashi, “Direct Observation and Image-Based Simulation of Three-Dimensional Tortuous Crack Evolution inside Opaque Materials,” Physical Review Letters, Vol. 100, No. 11, 2008, p. 115505. doi:10.1103/PhysRevLett.100.115505

[8] T. Q. Xiao, R. C. Chen, H. L. Xie, L. Rigon, R. Longo and E. Castelli, “Phase Retrieval in Quantitative X-Ray Microtomography with a Single Sample-to-Detector Distance,” Optics Letters, Vol. 36, No. 9, 2011, pp. 1719-1721. doi:10.1364/OL.36.001719

[9] T. Q. Xiao, S. M. Shi, R. C. Chen, Y. L. Xue, Y. Q. Ren, G. H. Du, B. Deng and H. L. Xie, “X-Ray Microscopic Imaging of Low Z Material Wrapped by Strongly Absorbing Medium,” Acta Physica Sinica, Vol. 57, No. 10, 2008, pp. 6319-6328.

[10] R. C. Chen, R. Longo, L. Rigon, F. Zanconati, A. De Pellegrin, F. Arfelli, D. Dreossi, R. H. Menk, E. Vallazza, T. Q. Xiao and E. Castelli, “Measurement of the Linear Attenuation Coefficients of Breast Tissues by Synchrotron Radiation Computed Tomography,” Physics in Medicine and Biology, Vol. 55, No. 17, 2010, pp. 4993-5005. doi:10.1088/0031-9155/55/17/008

[11] S. Mayo, A. Stevenson, S. Wilkins, D. Gao, S. Mookhoek, S. Meure, T. Hughes and J. Mardel, “X-Ray Phase-Contrast Tomography for Quantitative Characterisation of Self-Healing Polymers,” The 7th Pacific Rim International Conference on Advanced Materials and Processing, Vol. 654-656, 2010, pp. 2322-2325.

[12] S. Yang, S. Furman and A. Tulloh, “A Data-Constrained 3D Model for Material Compositional Microstructures,” Advanced Materials Research, Vol. 32, 2008, pp. 267-270. doi:10.4028/www.scientific.net/AMR.32.267

[13] Y. S. Yang, A. Tulloh, I. Cole, S. Furman and A. Hughes, “A Data-Constrained Computational Model for Morphology Structures,” Journal of the Australian Ceramics Society, Vol. 43, No. 2, 2007, pp. 159-164.

[14] H. J. Vinegar and S. L. Wellington, “Tomographic Imaging of 3-Phase Flow Experiments,” Review of Scientific Instruments, Vol. 58, No. 1, 1987, pp. 96-107. doi:10.1063/1.1139522

[15] S. Yang, D. C. Gao, T. Muster, A. Tulloh, S. Furman, S. Mayo and A. Trinchi, “Microstructure of a Paint Primer— A Data-Constrained Modeling Analysis,” The 7th Pacific Rim International Conference on Advanced Materials and Processing, Vol. 654-656, 2010, pp. 1686-1689.

[16] S. C. Mayo, A. M. Tulloh, A. Trinchi and Y. S. Yang, “Data-Constrained Microstructure Characterisation with Multi-Spectrum X-Ray,” Microscopy and Microanalysis, Vol. 18, No. 3, 2012, pp. 524-530. doi:10.1017/S1431927612000323

[17] Y. Wang, Y. Yang, I. Cole, A. Trinchi and T. Xiao, “Investigation of the Microstructure of an Aqueously Corroded Zinc Wire by Data-Constrained Modelling with Multi-Energy X-Ray CT,” Materials and Corrosion, Vol. 64, No. 3, 2013, pp. 180-184.

[18] A. Trinchi, Y. Yang, J. Huang, P. Falcaro, D. Buso and L. Cao, “Study of 3D Composition in a Nanoscale Sample Using Data-Constrained Modelling and Multi-Energy X-Ray CT,” Modelling and Simulation in Materials Science and Engineering, Vol. 20, No. 1, 2012, p. 015013. doi:10.1088/0965-0393/20/1/015013

[19] Y. S. Yang, T. E. Gureyev, A. Tulloh, M. B. Clennell and M. Pervukhina, “Feasibility of a Data-Constrained Prediction of Hydrocarbon Reservoir Sandstone Microstructures,” Measurement Science & Technology, Vol. 21, No. 4, 2010, Article No. 047001.

[20] S. Yang and J. Taylor, “Model and Data Work Together to Reveal Microscopic Structures of Materials,” SPIE Newsroom, 2010.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes: The Art of Scientific Computing,” 3rd Edition, Cambridge University Press, 2007.

[22] T. Xiao, A. Bergamaschi, D. Dreossi, R. Longo, A. Olivo, S. Pani, L. Rigon, T. Rokvic, C. Venanzi and E. Castelli, “Effect of Spatial Coherence on Application of In-Line Phase Contrast Imaging to Synchrotron Radiation Mammography,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 548, No. 1, 2005, pp. 155-162. doi:10.1016/j.nima.2005.03.083

[23] G. Y. Zhu, S. C. Zhang and Y. B. Liang, “Palaeo Environment and the Distribution of H2S in the Triassic Feixianguan (T1f) Formation, Northeastern Sichuan Basin, South China,” Journal of Petroleum Exploration and Development, Vol. 32, No. 2, 2005, pp. 65-69.

[24] J. Zhang and Y. G. Wang, “Characteristics of the Carbonate Evaporation Platform Margin Deposition of the Feixianguan Formation in the Hekou Region, Sichuan Basin,” Journal of Natural Gas Industry, Vol. 23, No. 2, 2003, pp. 19-22.

[25] T. E. Gureyev, Y. Nesterets, D. Ternovski, D. Thompson, S. W. Wilkins, A. W. Stevenson, A. Sakellariou and J. A. Taylor, “Toolbox for Advanced X-Ray Image Processing,” Vol. 8141, 2011, p. 81410B.

[26] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller and S. W. Wilkins, “Simultaneous Phase and Amplitude Extraction from a Single Defocused Image of a Homogeneous Object,” Journal of Microscopy-Oxford, Vol. 206, No. 1, 2002, pp. 33-40.

[27] Y. D. Wang, A. Stevenson, Y. S. Yang, A. Trinchi, S. Wilkins and T. Q. Xiao, “A Quantitative Study of Monochromatic X-Ray Transmission through Zinc Wires,” Journal of Synchrotron Radiation, Vol. 19, 2012, pp. 827-830.

[1] H. Andersson and C. Persson, “In-Situ SEM Study of Fatigue Crack Growth Behaviour in IN718,” International Journal of Fatigue, Vol. 26, No. 3, 2004, pp. 211-219. doi:10.1016/S0142-1123(03)00172-5

[2] C. Motz and R. Pippan, “Fracture Behaviour and Fracture Toughness of Ductile Closed-Cell Metallic Foams,” Acta Materialia, Vol. 50, No. 8, 2002, pp. 2013-2033. doi:10.1016/S1359-6454(02)00047-2

[3] L. H. Qian, H. Toda, S. Morita, T. Kobayashi and Z. G. Wang, “In-Situ Observations of Fracture Processes in 0.6 μm and 9.5 μm SiCP/6061Al Composites,” Materials Transactions, Vol. 46, No. 1, 2005, pp. 34-41. doi:10.2320/matertrans.46.34

[4] D. N. Bryon, M. P. Atherton and R. H. Hunter, “The Interpretation of Granitic Textures from Serial Thin Sectioning, Image-Analysis and 3-Dimensional Reconstruction,” Mineralogical Magazine, Vol. 59, No. 395, 1995, pp. 203-211. doi:10.1180/minmag.1995.059.395.05

[5] R. Marschallinger, “Correction of Geometric Errors Associated with the 3-D Reconstruction of Geological Materials by Precision Serial Lapping,” Mineralogical Magazine, Vol. 62, No. 6, 1998, pp. 783-792. doi:10.1180/002646198548160

[6] A. Mock and D. A. Jerram, “Crystal Size Distributions (CSD) in Three Dimensions: Insights from the 3D Reconstruction of a Highly Porphyritic Rhyolite,” Journal of Petrology, Vol. 46, No. 8, 2005, pp. 1525-1541. doi:10.1093/petrology/egi024

[7] L. Qian, H. Toda, K. Uesugi, M. Kobayashi and T. Kobayashi, “Direct Observation and Image-Based Simulation of Three-Dimensional Tortuous Crack Evolution inside Opaque Materials,” Physical Review Letters, Vol. 100, No. 11, 2008, p. 115505. doi:10.1103/PhysRevLett.100.115505

[8] T. Q. Xiao, R. C. Chen, H. L. Xie, L. Rigon, R. Longo and E. Castelli, “Phase Retrieval in Quantitative X-Ray Microtomography with a Single Sample-to-Detector Distance,” Optics Letters, Vol. 36, No. 9, 2011, pp. 1719-1721. doi:10.1364/OL.36.001719

[9] T. Q. Xiao, S. M. Shi, R. C. Chen, Y. L. Xue, Y. Q. Ren, G. H. Du, B. Deng and H. L. Xie, “X-Ray Microscopic Imaging of Low Z Material Wrapped by Strongly Absorbing Medium,” Acta Physica Sinica, Vol. 57, No. 10, 2008, pp. 6319-6328.

[10] R. C. Chen, R. Longo, L. Rigon, F. Zanconati, A. De Pellegrin, F. Arfelli, D. Dreossi, R. H. Menk, E. Vallazza, T. Q. Xiao and E. Castelli, “Measurement of the Linear Attenuation Coefficients of Breast Tissues by Synchrotron Radiation Computed Tomography,” Physics in Medicine and Biology, Vol. 55, No. 17, 2010, pp. 4993-5005. doi:10.1088/0031-9155/55/17/008

[11] S. Mayo, A. Stevenson, S. Wilkins, D. Gao, S. Mookhoek, S. Meure, T. Hughes and J. Mardel, “X-Ray Phase-Contrast Tomography for Quantitative Characterisation of Self-Healing Polymers,” The 7th Pacific Rim International Conference on Advanced Materials and Processing, Vol. 654-656, 2010, pp. 2322-2325.

[12] S. Yang, S. Furman and A. Tulloh, “A Data-Constrained 3D Model for Material Compositional Microstructures,” Advanced Materials Research, Vol. 32, 2008, pp. 267-270. doi:10.4028/www.scientific.net/AMR.32.267

[13] Y. S. Yang, A. Tulloh, I. Cole, S. Furman and A. Hughes, “A Data-Constrained Computational Model for Morphology Structures,” Journal of the Australian Ceramics Society, Vol. 43, No. 2, 2007, pp. 159-164.

[14] H. J. Vinegar and S. L. Wellington, “Tomographic Imaging of 3-Phase Flow Experiments,” Review of Scientific Instruments, Vol. 58, No. 1, 1987, pp. 96-107. doi:10.1063/1.1139522

[15] S. Yang, D. C. Gao, T. Muster, A. Tulloh, S. Furman, S. Mayo and A. Trinchi, “Microstructure of a Paint Primer— A Data-Constrained Modeling Analysis,” The 7th Pacific Rim International Conference on Advanced Materials and Processing, Vol. 654-656, 2010, pp. 1686-1689.

[16] S. C. Mayo, A. M. Tulloh, A. Trinchi and Y. S. Yang, “Data-Constrained Microstructure Characterisation with Multi-Spectrum X-Ray,” Microscopy and Microanalysis, Vol. 18, No. 3, 2012, pp. 524-530. doi:10.1017/S1431927612000323

[17] Y. Wang, Y. Yang, I. Cole, A. Trinchi and T. Xiao, “Investigation of the Microstructure of an Aqueously Corroded Zinc Wire by Data-Constrained Modelling with Multi-Energy X-Ray CT,” Materials and Corrosion, Vol. 64, No. 3, 2013, pp. 180-184.

[18] A. Trinchi, Y. Yang, J. Huang, P. Falcaro, D. Buso and L. Cao, “Study of 3D Composition in a Nanoscale Sample Using Data-Constrained Modelling and Multi-Energy X-Ray CT,” Modelling and Simulation in Materials Science and Engineering, Vol. 20, No. 1, 2012, p. 015013. doi:10.1088/0965-0393/20/1/015013

[19] Y. S. Yang, T. E. Gureyev, A. Tulloh, M. B. Clennell and M. Pervukhina, “Feasibility of a Data-Constrained Prediction of Hydrocarbon Reservoir Sandstone Microstructures,” Measurement Science & Technology, Vol. 21, No. 4, 2010, Article No. 047001.

[20] S. Yang and J. Taylor, “Model and Data Work Together to Reveal Microscopic Structures of Materials,” SPIE Newsroom, 2010.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes: The Art of Scientific Computing,” 3rd Edition, Cambridge University Press, 2007.

[22] T. Xiao, A. Bergamaschi, D. Dreossi, R. Longo, A. Olivo, S. Pani, L. Rigon, T. Rokvic, C. Venanzi and E. Castelli, “Effect of Spatial Coherence on Application of In-Line Phase Contrast Imaging to Synchrotron Radiation Mammography,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 548, No. 1, 2005, pp. 155-162. doi:10.1016/j.nima.2005.03.083

[23] G. Y. Zhu, S. C. Zhang and Y. B. Liang, “Palaeo Environment and the Distribution of H2S in the Triassic Feixianguan (T1f) Formation, Northeastern Sichuan Basin, South China,” Journal of Petroleum Exploration and Development, Vol. 32, No. 2, 2005, pp. 65-69.

[24] J. Zhang and Y. G. Wang, “Characteristics of the Carbonate Evaporation Platform Margin Deposition of the Feixianguan Formation in the Hekou Region, Sichuan Basin,” Journal of Natural Gas Industry, Vol. 23, No. 2, 2003, pp. 19-22.

[25] T. E. Gureyev, Y. Nesterets, D. Ternovski, D. Thompson, S. W. Wilkins, A. W. Stevenson, A. Sakellariou and J. A. Taylor, “Toolbox for Advanced X-Ray Image Processing,” Vol. 8141, 2011, p. 81410B.

[26] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller and S. W. Wilkins, “Simultaneous Phase and Amplitude Extraction from a Single Defocused Image of a Homogeneous Object,” Journal of Microscopy-Oxford, Vol. 206, No. 1, 2002, pp. 33-40.

[27] Y. D. Wang, A. Stevenson, Y. S. Yang, A. Trinchi, S. Wilkins and T. Q. Xiao, “A Quantitative Study of Monochromatic X-Ray Transmission through Zinc Wires,” Journal of Synchrotron Radiation, Vol. 19, 2012, pp. 827-830.