Identification of Artificial Neural Network Models for Three-Dimensional Simulation of a Vibration-Acoustic Dynamic System

Show more

References

[1] R. S. Magalhaes, C. H. O. Fontes, L. A. L. Almeida, M. Embirucu and J. M. C. Santos, “A Model for Three-Dimensional Simulation of Acoustic Emissions from Rotating Machine Vibration,” Journal of the Acoustical Society of America, Vol. 127, No. 6, 2010, pp. 3569-3576.
doi:10.1121/1.3425736

[2] R. S. Magalhaes, C. O. H. Fontes, L. A. L. Almeida, J. M. C. Santos and M. Embirucu, “A Model for Three-Dimensional Simulation of Acoustic Emissions from Rotating Machine Vibration,” Composites 2009, 2nd ECCO-MAS Thematic Conference on the Mechanical Response of Composites, 2009.

[3] B. O. Kachanov, “Symmetric Laplace Transform and Its Application to Parametric Identification of Linear Systems,” Automation and Remote Control, Vol. 70, No. 8, 2009, pp. 1309-1316. doi:10.1134/S0005117909080049

[4] E. L. Hines, E. Llobet and J. W. Gardner, “Electronic Noses: A Review of Signal Processing Techniques,” IEEE Proceedings—Circuits Devices and Systems, Vol. 146, No. 6, 1999, pp. 297-310.
doi:10.1049/ip-cds:19990670

[5] V. M. Becerra, F. R. Garces, S. J. Nasuto and W. Holderbaum, “An Efficient Parameterization of Dynamic Neural Networks for Nonlinear System Identification,” IEEE Transactions on Neural Networks, Vol. 16, No. 4, 2005, pp. 983-988. doi:10.1109/TNN.2005.849844

[6] J. Madar, J. Abonyi and F. Szeifert, “Genetic Programming for the Identification of Nonlinear Input-Output Models,” Industrial & Engineering Chemistry Research, Vol. 44, No. 9, 2005, pp. 3178-3186.
doi:10.1021/ie049626e

[7] V. Prasad and B. W. Bequette, “Nonlinear System Identification and Model Reduction Using Artificial Neural Networks,” Computers and Chemical Engineering, Vol. 27, No. 12, 2003, pp. 1741-1754.
doi:10.1016/S0098-1354(03)00137-6

[8] S. M. Siniscalchi and C.-H. Lee, “A Study on Integrating Acoustic-Phonetic Information into Lattice Rescoring for Automatic Speech Recognition,” Speech Communication, Vol. 51, No. 11, 2009, pp. 1139-1153.
doi:10.1016/j.specom.2009.05.004

[9] L. Yu and J. Kang, “Modeling Subjective Evaluation of Soundscape Quality in Urban Open Spaces: An Artificial Neural Network Approach,” Journal of the Acoustical Society of America, Vol. 126, No. 3, 2009, pp. 1163-1174.
doi:10.1121/1.3183377

[10] A. Dariouchy, E. Aassif, G. Maze, D. Decultot and A. Moudden, “Prediction of the Acoustic Form Function by Neural Network Techniques for Immersed Tubes,” Journal of the Acoustical Society of America, Vol. 124, No. 2, 2008, pp. 1018-1025. doi:10.1121/1.2945164

[11] A. Saxena and A. Saad, “Evolving an Artificial Neural Network Classifier for Condition Monitoring of Rotating Mechanical Systems,” Applied Soft Computing, Vol. 7, No. 1, 2007, pp. 441-454. doi:10.1016/j.asoc.2005.10.001

[12] A. C. Tsoi and A. D. Back, “Locally Recurrent Globally Feedforward Networks—A Critical-Review of Architectures,” IEEE Transactions on Neural Networks, Vol. 5, No. 2, 1994, pp. 229-239. doi:10.1109/72.279187

[13] A. U. Levin and K. S. Narendra, “Control Of Nonlinear Dynamic-Systems Using Neural Networks—Controllability and Stabilization,” IEEE Transactions on Neural Networks, Vol. 4, No. 2, 1993, pp. 192-206.
doi:10.1109/72.207608

[14] A. U. Levin and K. S. Narendra, “Contro of Nonlinear Dynamical Systems Using Neural Networks. II. Observability, Identification, and Control,” IEEE Transactions on Neural Networks, Vol. 7, No. 1, 1996, pp. 30-42.
doi:10.1109/72.478390

[15] R. T. Bambang, “Adjoint EKF Learning in Recurrent Neural Networks for Nonlinear Active Noise Control,” Applied Soft Computing, Vol. 8, No. 4, 2008, pp. 1498-1504.
doi:10.1016/j.asoc.2007.10.017

[16] C.-Y. Chang and F.-B. Luoh, “Enhancement of Active Noise Control Using Neural-Based Filtered-X Algorithm,” Journal of Sound and Vibration, Vol. 305, No. 1-2, 2007, pp. 348-356. doi:10.1016/j.jsv.2007.04.007

[17] Q.-Z. Zhang, W.-S. Gan and Y. Zhou, “Adaptive Recurrent Fuzzy Neural Networks for Active Noise Control,” Journal of Sound and Vibration, Vol. 296, No. 4-5, 2006, pp. 935-948. doi:10.1016/j.jsv.2006.03.020

[18] M. Bouchard, “New Recursive-Least-Squares Algorithms for Nonlinear Active Control of Sound and Vibration Using Neural Networks,” IEEE Transactions on Neural Networks, Vol. 12, No. 1, 2001, pp. 135-147.
doi:10.1109/72.896802

[19] F. Rosenblatt, “The Perceptron—A Probabilistic Model for Information-Storage and Organization in the Brain,” Psychological Review, Vol. 65, No. 6, 1958, pp. 386-408.
doi:10.1037/h0042519

[20] E. Masson and Y. J. Wang, “Introduction to Computation and Learning in Artificial Neural Networks,” European Journal of Operational Research, Vol. 47, No. 1, 1990, pp. 1-28. doi:10.1016/0377-2217(90)90085-P

[21] M. Nikravesh, A. E. Farell and T. G. Stanford, “Model Identification of Nonlinear Time Variant Processes via Artificial Neural Network,” Computers & Chemical Engineering, Vol. 20, No. 11, 1996, pp. 1277-1290.
doi:10.1016/0098-1354(95)00245-6

[22] J. X. Zhan and M. Ishida, “The Multi-Step Predictive Control of Nonlinear SISO Processes with a Neural Model Predictive Control (NMPC) Method,” Computers & Chemical Engineering, Vol. 21, No. 2, 1997, pp. 201-210.
doi:10.1016/0098-1354(95)00257-X

[23] K. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, 1990, pp. 4-27. doi:10.1109/72.80202

[24] A. J. Meade and H. C. Sonneborn, “Numerical Solution of a Calculus of Variations Problem Using the Feedforward Neural Network Architecture,” Advances in Engineering Software, Vol. 27, No. 3, 1996, pp. 213-225.
doi:10.1016/S0965-9978(96)00029-4

[25] R. R. Selmic and F. L. Lewis, “Neural-Network Approximation of Piecewise Continuous Functions: Application to Friction Compensation,” IEEE Transactions on Neural Networks, Vol. 13, No. 3, 2002, pp. 745-751.
doi:10.1109/TNN.2002.1000141

[26] N. Takagi and S. Kuwahara, “A VLSI Algorithm for Computing the Euclidean Norm of a 3D Vector,” IEEE Transactions on Computers, Vol. 49, No. 10, 2000, pp. 1074-1082. doi:10.1109/12.888043

[27] L. T. Biegler and I. E. Grossmann, “Restrospective on Optimization,” Computers and Chemical Engineering, Vol. 28, No. 8, 2004, pp. 1169-1192.
doi:10.1016/j.compchemeng.2003.11.003

[28] P. E. Gill, W. Murray and M. A. Saunders, “A Practical Anti-Cycling Procedure for Linearly Constrained Optimization,” Mathematical Programming, Vol. 45, No. 3, 1989, pp. 437-474. doi:10.1007/BF01589114

[29] O. A. Brezhneva, A. A. Tret’yakov and S. E. Wright, “A Simple and Elementary Proof of the Karush-Kuhn-Tucker Theorem for Inequality-Constrained Optimization,” Optimization Letters, Vol. 3, No. 1, 2009, pp. 7-10.
doi:10.1007/s11590-008-0096-3

[30] M. C. Biggs, “Convergence of Some Constrained Minimization Algorithms Based on Recursive Quadratic Programming,” Journal of the Institute of Mathematics and Its Applications, Vol. 21, No. 1, 1978, pp. 67-81.
doi:10.1093/imamat/21.1.67

[31] S. P. Han, “Globally Convergent Method for Nonlinear-Programming,” Journal of Optimization Theory and Applications, Vol. 22, No. 3, 1977, pp. 297-309.
doi:10.1007/BF00932858

[32] R. P. Ge and M. J. D. Powell, “The Convergence of Variable-Metric Matrices in Unconstrained Optimization,” Mathematical Programming, Vol. 27, No. 2, 1983, pp. 123-143. doi:10.1007/BF02591941

[33] W. Hock and K. Schittkowski, “A Comparative Performance Evaluation of 27 Non-Linear Programming Codes,” Computing, Vol. 30, No. 4, 1983, pp. 335-358.
doi:10.1007/BF02242139

[34] P. E. Danielsson, “Euclidean Distance Mapping,” Computer Graphics and Image Processing, Vol. 14, No. 3, 1980, pp. 227-248. doi:10.1016/0146-664X(80)90054-4