Back
 JQIS  Vol.3 No.1 , March 2013
Measurement-Induced Nonlocality and Geometric Discord in the Spin-Boson Model
Abstract: Dynamics of measurement-induced-nonlocality (MIN) and geometric measure of discord (GD) in the spin-boson model is studied. Analytical results show that for two large classes of initial states, MINs are equal but GDs are different. At the end of evolution, MIN and GD initially stored in the spin system transfer completely to reservoirs. The quantum beats for MIN and GD are also found which are the results of quantum interference between two local non-Markovian dynamics via quantum correlation.
Cite this paper: G. Wang, Z. Fan and H. Zeng, "Measurement-Induced Nonlocality and Geometric Discord in the Spin-Boson Model," Journal of Quantum Information Science, Vol. 3 No. 1, 2013, pp. 34-41. doi: 10.4236/jqis.2013.31008.
References

[1]   S. Luo, “Using Measurement-Induced Disturbance to Characterize Correlations as Classical or Quantum,” Physical Review A, Vol. 77, No. 2, 2008, Article ID: 022301. doi:10.1103/PhysRevA.77.022301

[2]   M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.

[3]   H. Ollivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Physical Review Letters, Vol. 88, No. 1, 2001, Article ID: 017901. doi:10.1103/PhysRevLett.88.017901

[4]   A. Datta, A. Shaji and C. M. Caves, “Quantum Discord and the Power of One Qubit,” Physical Review Letters, Vol. 100, No. 5, 2008, Article ID: 050502. doi:10.1103/PhysRevLett.100.050502

[5]   B. P. Lanyon, M. Barbieri, M. P. Almeida and A. G. White, “Experimental Quantum Computing without Entanglement,” Physical Review Letters, Vol. 101, No. 20, 2008, Article ID: 200501. doi:10.1103/PhysRevLett.101.200501

[6]   R. Dillenschneider, “Quantum Discord and Quantum Phase Transition in Spin Chains,” Physical Review B, Vol. 78, No. 22, 2008, Article ID: 224413. doi:10.1103/PhysRevB.78.224413

[7]   M. S. Sarandy, “Classical Correlation and Quantum Discord in Critical Systems,” Physical Review A, Vol. 80, No. 2, 2009, Article ID: 022108. doi:10.1103/PhysRevA.80.022108

[8]   J. Cui and H. Fan, “Correlations in the Grover Search,” Journal of Physics A: Mathematical and Theoretical, Vol. 43, No. 4, 2010, Article ID: 045305. doi:10.1088/1751-8113/43/4/045305

[9]   S. Luo, “Quantum Discord for Two-Qubit Systems,” Physical Review A, Vol. 77, No. 4, 2008, Article ID: 042303. doi:10.1103/PhysRevA.77.042303

[10]   G. Adesso and A. Datta, “Quantum versus Classical Correlations in Gaussian States,” Physical Review Letters, Vol. 105, No. 3, 2010, Article ID: 030501. doi:10.1103/PhysRevLett.105.030501

[11]   P. Giorda and M. G. A. Paris, “Gaussian Quantum Discord,” Physical Review Letters, Vol. 105, No. 2, 2010, Article ID: 020503. doi:10.1103/PhysRevLett.105.020503

[12]   B. Dakic, V. Vedral and C. Brukner, “Necessary and Sufficient Condition for Nonzero Quantum Discord,” Physical Review Letters, Vol. 105, No. 19, 2010, Article ID: 190502. doi:10.1103/PhysRevLett.105.190502

[13]   S. Luo and S. Fu, “Measurement-Induced Nonlocality,” Physical Review Letters, Vol. 106, No. 12, 2011, Article ID: 120401. doi:10.1103/PhysRevLett.106.120401

[14]   S. Luo and S. Fu, “Geometric Measure of Quantum Discord,” Physical Review A, Vol. 82, No. 3, 2010, Article ID: 034302. doi:10.1103/PhysRevA.82.034302

[15]   S. Luo and S. Fu, “Evaluating the Geometric Measure of Quantum Discord,” Theoretical and Mathematical Physics, Vol. 171, No. 3, 2012, pp. 870-878. doi:10.1007/s11232-012-0082-x

[16]   B. Bellomo, R. Lo Franco and G. Compagno, “Dynamics of Geometric and Entropic Quantifiers of Correlations in Open Quantum Systems,” Physical Review A, Vol. 86, No. 1, 2012, Article ID: 012312. doi:10.1103/PhysRevA.86.012312

[17]   B. Bellomo, G. L. Giorgi, F. Galve, R. Lo Franco, G. Compagno and R. Zambrini, “Unified View of Correlations Using the Square Norm Distance,” Physical Review A, Vol. 85, No. 3, 2012, Article ID: 032104. doi:10.1103/PhysRevA.85.032104

[18]   K. Ann and G. Jaeger, “Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences,” Foundations of Physics, Vol. 39, No. 7, 2009, pp. 790-828. doi:10.1007/s10701-009-9295-8

[19]   B. Bellomo, G. Compagno, R. Lo Franco, A. Ridolfo and S. Savasta, “Dynamics and Extraction of Quantum Discord in Multipartite Open Systems,” International Journal of Quantum Information, Vol. 9, No. 7-8, 2011, pp. 1665-1676.

[20]   T. Yu and J. H. Eberly, “Finite-Time Disentanglement via Spontaneous Emission,” Physical Review Letters, Vol. 93, No. 14, 2004, Article ID: 140404. doi:10.1103/PhysRevLett.93.140404

[21]   B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco and E. Paladino, “Entanglement Degradation in the Solid State: Interplay of Adiabatic and Quantum Noise,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 062309. doi:10.1103/PhysRevA.81.062309

[22]   T. Werlang, S. Souza, F. F. Fanchini and C. J. Villas Boas, “Robustness of Quantum Discord to Sudden Death,” Physical Review A, Vol. 80, No. 2, 2009, Article ID: 024103. doi:10.1103/PhysRevA.80.024103

[23]   B. Bellomo, R. Lo Franco and G. Compagno, “Non-Markovian Effects on the Dynamics of Entanglement,” Physical Review Letters, Vol. 99, No. 16, 2007, Article ID: 160502. doi:10.1103/PhysRevLett.99.160502

[24]   R. Lo Franco, B. Bellomo, S. Maniscalco and G. Compagno, “Dynamics of Quantum Correlations in Two-Qubit Systems within Non-Markovian Environments,” International Journal of Modern Physics B, Vol. 27, No. 1-3, 2013, Article ID: 1345053.

[25]   R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno and E. Paladino, “Entanglement Dynamics in Superconducting Qubits Affected by Local Bistable Impurities,” Physica Scripta, Vol. T147, 2012, Article ID: 014019. doi:10.1088/0031-8949/2012/T147/014019

[26]   B. Bellomo, G. Compagno, R. Lo Franco, A. Ridolfo and S. Savasta, “Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots,” Physica Scripta, Vol. T143, 2011, Article ID: 014004. doi:10.1088/0031-8949/2011/T143/014004

[27]   R. Lo Franco, B. Bellomo, E. Andersson and G. Compagno, “Revival of Quantum Correlations without Sys- tem-Environment Back-Action,” Physical Review A, Vol. 85, No. 3, 2012, Article ID: 032318. doi:10.1103/PhysRevA.85.032318

[28]   Q. J. Tong, J. H. An, H. G. Luo and C. H. Oh, “Mechanism of Entanglement Preservation,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052330. doi:10.1103/PhysRevA.81.052330

[29]   R. C. Ge, M. Gong, C. F. Li, J. S. Xu and G. C. Guo, “Quantum Correlation and Classical Correlation Dynamics in the Spin-Boson Model,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 064103. doi:10.1103/PhysRevA.81.064103

[30]   B. Bellomo, R. Lo Franco, S. Maniscalco and G. Compagno, “Entanglement Trapping in Structured Environments,” Physical Review A, Vol. 78, No. 6, 2008, Article ID: 060302(R). doi:10.1103/PhysRevA.78.060302

[31]   H. S. Zeng, Y. P. Zheng, N. Tang and G. Y. Wang, “Correlation Quantum Beats Induced by Non-Markovian Effect,” Quantum Information Process, Vol. 12, No. 4, 2013, pp. 1637-1650. doi:10.1007/s11128-012-0437-0

[32]   C. E. Lopez, G. Romero and J. C. Retamal, “Dynamics of Entanglement Transfer through Multipartite Dissipative Systems,” Physical Review A, Vol. 81, No. 6, 2010, Article ID: 062114. doi:10.1103/PhysRevA.81.062114

 
 
Top