ABB  Vol.4 No.3 A , March 2013
Bacteriophages in Escherichia coli antimicrobial resistance
ABSTRACT

The continuous battle between humans and the multitude of pathogenic microorganisms in the environment has sought relief in the form of antimicrobials. But the counter attack by pathogenic organisms in the form of multidrug resistance, acquired by various mechanisms such as transformation, transposition, conjugation and transduction is a major reason for concern. Bacteriophages have contributed in a significant way to dissemination of genes encoding antimicrobial resistance, heavy metal resistance and virulence factors through the phenomenon of transduction. This review aims at compiling information about the different mechanisms by which bacteriophages aid in transferring genes involved in antimicrobial resistance to Escherischia coli in various environments.


Cite this paper
Iyer, A. , Barbour, E. , Azhar, E. , Qadri, I. , Chaudhary, A. , Abuzenadah, A. , Kumosani, T. , Damanhouri, G. , Bahijri, S. , Al-Hejin, A. , Nour, A. and Harakeh, S. (2013) Bacteriophages in Escherichia coli antimicrobial resistance. Advances in Bioscience and Biotechnology, 4, 469-476. doi: 10.4236/abb.2013.43A062.
References
[1]   Allison, H.E. (2007) Stx-phages: Drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiology, 2, 165-174. doi:10.2217/17460913.2.2.165

[2]   Sorensen, S.J., Bailey, M., Hansen, L.H., Kroer, N. and Wuertz, S. (2005) Studying plasmid horizontal transfer in situ: A critical review. Nature Reviews Microbiology, 15, 700-710. doi:10.1038/nrmicro1232

[3]   Kelly, B.G., Vespermann, A. and Bolton, D.J. (2009) The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens. Food Chemistry & Toxicology, 47, 951-968. doi:10.1016/j.fct.2008.02.006

[4]   Mizutani, S., Nakazono, N. and Sugino, Y. (1999) The Socalled chromosomal verotoxin genes are actually carried by defective prophages. DNA Research, 6, 141-143. doi:10.1093/dnares/6.2.141

[5]   Evans Jr., Doyle, J., Dolores, G. and Evans (2007) Escherichia coli. Medical microbiology. 4th Edition, The University of Texas Medical Branch, Galveston, 29-42.

[6]   Aminov, R.I. (2011) Horizontal gene exchange in environmental microbiota. Froniers in Microbiology, 2, 1-19.

[7]   Burrus, V., Pavlovic, G., Decaris, B. and Guédon, G. (2002) Conjugative transposons: The tip of the iceberg. Molecular Microbiology, 46, 601-10. doi:10.1046/j.1365-2958.2002.03191.x

[8]   Wozniak, R.A. and Waldor, M.K. (2010) Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Reviews in Microbiology, 8, 552-563. doi:10.1038/nrmicro2382

[9]   Casjens, S. (2003) Prophages and bacterial genomics: What have we learned so far? Molecular Microbiology, 49, 277-300. doi:10.1046/j.1365-2958.2003.03580.x

[10]   Canchaya, C., Proux, C., Fournous, G., Bruttin, A. and Brüssow, H. (2003) Prophage genomics. Microbiology and Molecular Biology Reviews, 67, 238-276. doi:10.1128/MMBR.67.2.238-276.2003

[11]   Lawrence, J.G. and Ochman, H. (1997) Amelioration of bacterial genomes: Rates of change and exchange. Journal of Molecular Evolution, 44, 383-397. doi:10.1007/PL00006158

[12]   Wang, X., Kim, Y., Ma, Q., Hong, S.H., Pokusaeva, K., Sturino, J.M. and Wood, T.K. (2010) Cryptic prophages help bacteria cope with adverse environments. Nature Communications, 1, 147-156. doi:10.1038/ncomms1146

[13]   Kenzaka, T., Tani, K., Sakotani, A., Yamaguchi, N. and Nasu, M. (2007) High-frequency phage-mediated gene transfer among Escherichia coli cells, determined at the single-cell level. Applied and Environmental Microbiology, 73, 3291-3299. doi:10.1128/AEM.02890-06

[14]   Brüssow, H., Canchaya, C. and Hardt, W.D. (2004) Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews, 68, 560-602. doi:10.1128/MMBR.68.3.560-602.2004

[15]   Coombes, B.K., Gilmour, M.W. and Goodman, C.D. (2011) The evolution of virulence in non-O157 shiga toxin-producing Escherichia coli. Frontiers in Microbiology, 2, 90-93. doi:10.3389/fmicb.2011.00090

[16]   Call, D.R., Davis, M.A. and Sawant, A.A. (2008) Antibiotic resistance in beef and dairy cattle production. Animal Health Research Reviews, 9, 159-167. doi:10.1017/S1466252308001515

[17]   Enne, V.I., Cassar, Sprigings, K., Woodward, M.J. and Bennett, P.M. (2008) A high prevalence of antibiotic resistant Escherichia coli isolated from pigs and a low prevalence of antibiotic resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiology Letters, 278, 193-199. doi:10.1111/j.1574-6968.2007.00991.x

[18]   Ziebell, K., Johnson, R.P., Kropinski, A.M., Reid-Smith, R., Ahmed, R., Gannon, V.P., Gilmour, M. and Boerlin, P. (2011) Gene cluster conferring streptomycin, sulfonamide, and tetracycline resistance in Escherichia coli O157: H7 phage types 23, 45, and 67. Applied and Environmental Microbiology, 77, 1900-1903. doi:10.1128/AEM.01934-10

[19]   Asadulghani, M., Ogura, Y., Ooka, T., Itoh, T., Sawaguchi, A., Iguchi, A., Nakayama, K. and Hayashi, T. (2009) The defective prophage pool of Escherichia coli O157: Prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathogens, Article ID: e1000408. doi:10.1371/journal.ppat.1000408

[20]   Brabban, A.D., Hite, E. and Callaway, T.R. (2005) Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathogenic Diseases, 2, 287-303. doi:10.1089/fpd.2005.2.287

[21]   Aertsen, A., Faster, D. and Michiels, C.W. (2005) Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. Applied and Environmental Microbiology, 71, 1155-1162. doi:10.1128/AEM.71.3.1155-1162.2005

[22]   Imamovic, L., Jofre, J., Schmidt, H., Moreno, R.S. and Muniesa, M. (2009) Phage-mediated Shiga toxin 2 gene transfer in food and water. Applied and Environmental Microbiology, 75, 1764-1768. doi:10.1128/AEM.02273-08

[23]   Baggi, F., Demarta, A. and Peduzzi, R. (2001) Persistence of viral pathogens and bacteriophages during sewage treatment: Lack of correlation with indicator bacteria. Research in Microbiology, 152, 743-751. doi:10.1016/S0923-2508(01)01255-4

[24]   Zhu, B. (2006) Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction PCR. Water Research, 40, 3231-3238. doi:10.1016/j.watres.2006.06.040

[25]   Lluch, M.C., Imamovic, L., Jofre, J. and Muniesa, M. (2011) Bacteriophages carrying antimicrobial resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrobial agents and Chemotherapy, 55, 4908-4911. doi:10.1128/AAC.00535-11

[26]   Biyela, P.T., Lin, J. and Bezuidenhout, C.C. (2004) The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology, 50, 45-50.

[27]   Lupo, A., Coyne, S. and Berendonk, T.U. (2012) Origin and evolution of antimicrobial resistance: The common mechanisms of emergence and spread in water bodies. Frontiers in Microbiology, 3, 1-13. doi:10.3389/fmicb.2012.00018

[28]   Auerbach, E.A., Seyfried, E.E. and McMahon, K.D. (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41, 1143-1151. doi:10.1016/j.watres.2006.11.045

[29]   Parsley, L.C., Consuegra, E.J., Kakirde, K.S., Land, A.M., Harper Jr., W.F. and Liles, M.R. (2010) Identification of diverse antibiotic resistance determinants encoded on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Applied and Environmental Microbiology, 76, 3753-3757. doi:10.1128/AEM.03080-09

[30]   Jury, K.L., Vancov, T., Stuetz, R.M. and Khan, S.J. (2010) Antimicrobial resistance dissemination and sewage treatment plants. In: Méndez-Vilas, A.F., Ed., Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 509-519.

[31]   Muniesa, M., Garcia, A., Miro, E., Mirelis, B., Prats, G., Jofre, J. and Navarro, F. (2004) Bacteriophages and diffusion of beta-lactamase genes. Emerging Infectious Diseases, 10, 1134-1137. doi:10.3201/eid1006.030472

[32]   Kim, S., Jensen, J.N., Aga, D.S. and Weber, A.S. (2007) Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere, 66, 1643-1651. doi:10.1016/j.chemosphere.2006.07.066

[33]   Gobel, A., McArdell, C.S., Joss, A., Siegrist, H. and Giger, W. (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 372, 361-371. doi:10.1016/j.scitotenv.2006.07.039

[34]   Dolejska, M., Frolkova, P. and Florek, M. (2011) CTX-M15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. Journal of Antimicrobial Chemotherapy, 66, 2784-2790. doi:10.1093/jac/dkr363

[35]   Seyfried, E.E., Newton, R.J., Rubert, K.F., Pedersen, J.A. and McMahon, K.D. (2010) Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microbial Ecology, 59, 799-807. doi:10.1007/s00248-009-9624-7

[36]   Czekalski, N., Berthold, T., Caucci, S., Egli, A. and Bürgmann, H. (2012) Increased levels of multiresistant bacteria and resistance genes after waste water treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 3, 1-18.

[37]   D’Costa, V.M., King, C.E. and Kalan, L. (2011) Antibiotic resistance is ancient. Nature, 477, 457-461. doi:10.1038/nature10388

[38]   Rolain, J.M., Canton, R. and Cornaglia, G. (2012) Emergence of antibiotic resistance: Need for a new paradigm. Clinical Microbiology and Infection, 18, 615-616. doi:10.1111/j.1469-0691.2012.03902.x

[39]   Foxman, B. (2002) Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. American Journal of Medicine, 113, 5S-13S. doi:10.1016/S0002-9343(02)01054-9

[40]   Lee, D.J., Bingle, L.E., Heurlier, K., Pallen, M.J., Penn, C.W., Busby, S.J. and Hobman, J.L. (2009) Gene doctoring: A method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiology, 9, 252-265. doi:10.1186/1471-2180-9-252

[41]   Battaglioli, E.J., Baisa, G.A., Weeks, G.E., Schroll, R.A., Hryckowian, A.J. and Welch, R.A. (2011) Isolation of generalized transducing bacteriophages for uropathogenic strains of Escherichia coli. Applied and Environmental Microbiology, 77, 6630-6635. doi:10.1128/AEM.05307-11

[42]   Bien, J., Sokolova, O. and Bozko, P. (2012) Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. International Journal of Nephrology, 2012, Article ID: 681473. doi:10.1155/2012/681473

[43]   Hassan, A.O., Hassan, R.O., Muhibi, M.A. and Adebimpe, W.O. (2012) A survey of Enterobacteriaceae in hospital and community acquired infections among adults in a tertiary health institution in south western Nigeria. African Journal of Microbiology, 6, 5162-5167.

[44]   Bean, D.C., Krahe, D. and Wareham, D.W. (2008) Antibiotic resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005-2006. Annals of Clinical Microbiology and Antimicrobials, 7, 1316. doi:10.1186/1476-0711-7-13

[45]   Karbasizaed, V., Badami, N. and Emtiazi, G. (2004) Antimicrobial, heavy metal resistance and plasmid profile of coliforms isolated from nosocomial infections in a hospital in Isfahan, Iran. African Journal of Biotechnology, 2, 379-383.

[46]   Blahova, J., Kralikova, K., Krcmery, V. and Jezek, P. (2000) Low-frequency transduction of imipenem resistance and high-frequency transduction of ceftazidime and aztreonam resistance by the bacteriophage AP-151 isolated from a Pseudomonas aeruginosa strain. Journal of Chemotherapy, 12, 482-486.

[47]   Keen, E.C. (2012) Phage therapy: Concept to cure. Frontiers in Microbiology, 3, 1-3.

[48]   Chanishvili, N., Chanishvili, T., Tediashvili, M. and Barrow, P.A. (2001) Phages and their application against drug-resistant bacteria. Journal of Chemical Technology and Biotechnology, 76, 689-699. doi:10.1002/jctb.438

[49]   Ul-Haq, I., Chaudhry, W.N., Akhtar, M.N., Andleeb, S. and Qadri I. (2012) Bacteriophages and their implications on future biotechnology: A review. Virology Journal, 9, 9-17. doi:10.1186/1743-422X-9-9

[50]   Jikia, D., Chkhaidze, N., Imedashvili, E., Mgaloblishvili, I. and Tsitlanadze, G. (2005) The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clinical & Experimental Dermatology, 30, 23-26. doi:10.1111/j.1365-2230.2004.01600.x

[51]   Gullberg, E., Cao, S., Berg, O.G., Ilback, C., Sandegren, L., Hughes, D. and Andersson, D.I. (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7, Article ID: e1002158. doi:10.1371/journal.ppat.1002158

[52]   Wiedenbeck, J. and Cohan, F.M. (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews, 35, 957-976. doi:10.1111/j.1574-6976.2011.00292.x

[53]   Ryan, E.M., Gorman, S.P., Donnelly, R.F. and Gilmore, B.F. (2011) Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. The Journal of Pharmacy and Pharmacology, 63, 1253-1264. doi:10.1111/j.2042-7158.2011.01324.x

[54]   Gilmore, B.F. (2012) Bacteriophages as anti-infective agents: Recent developments and regulatory challenges. Expert Review of Anti-Infective Therapy, 10, 533-535. doi:10.1586/eri.12.30

 
 
Top