Back
 Health  Vol.5 No.3 , March 2013
Investigation of the serum oxidative stress in broilers fed on diets supplemented with nickel chloride
Abstract: The purpose of this study was to investigate the serum oxidative stress induced by dietary nickel chloride (NiCl2) in broilers. A total of 240 one-day-old avian broilers were divided into four groups and fed on a cornsoybean basal diet as control diet or the same basal diet supplemented with 300 mg/kg, 600 mg/kg and 900 mg/kg NiCl2. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde (MDA) content was significantly higher (p < 0.05 or p < 0.01) in the 300 mg/kg, 600 mg/kg and 900 mg/kg groups than that in the control group. In contrast, the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione per- oxidase (GSH-Px), and the ability to inhibit hydroxy radical, and glutathione hormone (GSH) content were significantly decreased (p < 0.05 or p < 0.01) in the 300 mg/kg, 600 mg/kg and 900 mg/kg groups in comparison with those of the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could cause oxidative stress, which could finally impaired the antioxidant function in broilers.
Cite this paper: Wu, B. , Cui, H. , Peng, X. , Fang, J. , Zuo, Z. , Deng, J. and Huang, J. (2013) Investigation of the serum oxidative stress in broilers fed on diets supplemented with nickel chloride. Health, 5, 454-459. doi: 10.4236/health.2013.53061.
References

[1]   Grandjean, P. (1984) Human exposure to nickel. IARC Scientific Publications, 53, 469-485.

[2]   Clarkson, T.W., Friberg, L., Nordberg, G.F. and Sager, P.R. (1988) Biological monitoring of toxic metals. Plenum Press, New York, 265-282. doi:10.1007/978-1-4613-0961-1

[3]   Anke, M., Grun, M., Ditrich, G. and Hennig, A. (1974) Low nickel rations for growth and reproduction in pigs. In: Hoekstra, W.C., Suttle, J.W., Canther, H.E. and Mertz, W., Eds., Trace Element Metabolism in Animals-2, University Park Press, Baltimore, 715-717.

[4]   Nielson, F.H., Myron, D.R., Guvand, S.H., Zimmerman, T.J. and Ollerich, D.A. (1975) Nickel deficiency in rats. The Journal of Nutrition, 105, 1620-1630.

[5]   Afridi, H.I., Kazi, T.G., Kazi, N.S., Kandhro, G.A., Baig, J.A., Shah, A.Q., Wadhwa, S.K., Khan, S., Kolachi, N.F., Shah, F., Jamali, M.K. and Arain, M.B. (2011) Evaluation of status of cadmium, lead, and nickel levels in biological samples of normal and night blindness children of age groups 3 - 7 and 8 - 12 years. Biological Trace Element Research, 142, 350-361. doi:10.1007/s12011-010-8796-9

[6]   Phipps, T., Tank, S.L., Wirtz, J., Brewer, L., Coyner, A., Ortego, L.A. and Fairbrother, A. (2002) Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environmental Reviews, 10, 209-261. doi:10.1139/a02-009

[7]   Stangl, G.I. and Kirchgessner, M. (1996) Nickel deficiency alters liver lipid metabolism in rats. The Journal of Nutrition, 126, 2466-2473.

[8]   Nielsen, F.H., Uthus, E.O., Poellot, R.A. and Shuler, T.R. (1993) Dietary vitamin B12, sulfur amino acids, and oddchain fatty acids affect the responses of rats to nickel deprivation. Biological Trace Element Research, 37, 1-15. doi:10.1007/BF02789397

[9]   Uthus, E.O. and Poellot, R.A. (1997) Dietary nickel and folic acid interact to affect folate and methionine meta- bolism in the rat. Biological Trace Element Research, 58, 25-33. doi:10.1007/BF02910663

[10]   Friedrich, C.G., Schneider, K. and Friedrich, B. (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. Journal of Bacteriology, 152, 42-48.

[11]   Friedrich, B., Heine, E., Finck, A. and Friedrich, C.G. (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. Journal of Bacteriology, 145, 1144-1149.

[12]   Costa, M., Salnikow, K., Cosentio, Z., Klein, C.B., Huang, X. and Zhuang, Z. (1994) Molecular mechanism of nickel carcinogenesis. Environmental Health Perspectives, 102, 127-130.

[13]   Kasprazak, K.S., Bal, W. and Karaczyn, A.A. (2003) The role of chromatin damage in nickel induced carcinogenesis. A review of recent developments. Journal of Environmental Monitoring, 5, 183-187. doi:10.1039/b210538c

[14]   LaBella, F.S., Dular, R., Lemon, P., Vivian, S. and Queen, G. (1973) Prolactin secretion is specifically inhibited by nickel. Nature, 245, 330-332. doi:10.1038/245330a0

[15]   LaBella, F.S., Dular, R., Vivian, S. and Queen, G. (1973) Pituitary hormone releasing or inhibiting activity of metal ions present in hypothalamic extracts. Biochemical and Biophysical Research Communications, 52, 786-791. doi:10.1016/0006-291X(73)91006-1

[16]   Yokoi, K., Uthus, E.O. and Nielsen, F.H. (2003) Nickel deficiency diminishes sperm quantity and movement in rats. Biological Trace Element Research, 93, 141-153. doi:10.1385/BTER:93:1-3:141

[17]   Bencko, V. (1983) Nickel: A review of its occupational and environmental toxicology. Journal of Hygiene, Epidemiology, Microbiology, and Immunology, 27, 237-247.

[18]   Ragsdale, S.W. (2006) Nickel enzymes and cofactors. In: King, R.B., Ed., Encyclopedia of Inorganic Chemistry, John Wiley & Sons Ltd., New York, 3378-3393. doi:10.1002/0470862106.ia149

[19]   Demir, T.A., Isikli, B., ürer, S.M., Berber, A., Akar, T., Canbek, M. and Kalyoncu, C. (2005) Nickel exposure and its effects. Biometals, 18, 7-13. doi:10.1007/s10534-004-1209-9

[20]   Young, R.A. (1995) Toxicity Profiles. Toxicity summary for nickel and nickel compounds. http://risk.lsd.ornl.gov/tox/profiles/nickel

[21]   Das, K.K., Das, S.N. and Dhundasi, S.A. (2008) Nickel, its adverse health effects & oxidative stress. Indian Journal of Medical Research, 128, 412-425.

[22]   Das, K.K. and Buchner, V. (2007) Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Reviews on Environmental Health, 22, 133-149. doi:10.1515/REVEH.2007.22.2.157

[23]   National Re-search Council (NRC) (1994) Nutrient requirements of poultry. 9th Edition, National Academy Press, Washington DC.

[24]   Capcarova, M., Kolesarova, A., Arpasova, H., Massanyi, P., Lukac, N., Kovacik, J., Kalafova, A. and Schneidgenova, M. (2008) Blood biochemical dynamics and correlations in laying hens after experimental nickel administration. International Journal of Poultry Science, 7, 538- 547. doi:10.3923/ijps.2008.538.547

[25]   Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001) Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Current Topics Medicinal Chemistry, 1, 529-539. doi:10.2174/1568026013394831

[26]   Coogan, T.P., Latta, D.M., Snow, E.T., Costa, M. and Lawrence, A. (1989) Toxicity and carcinogenicity of nickel compounds. Critical Reviews in Toxicology, 19, 341-384. doi:10.3109/10408448909029327

[27]   Donskoy, E., Donskoy, M., Forouhar, F., Gillies, C.G., Marzouk, A., Reid, M.C., Zaharia, O. and Sunderman Jr., F.W. (1986) Hepatic toxicity of nickel chloride in rats. Annals of Clinical and Laboratory Science, 16, 108-117.

[28]   Chen, C.Y., Sheu, J.Y. and Lin, T.H. (1999) Oxidative effects of nickel on bone marrow and blood of rats. Journal of Toxicology and Environmental Health-Part A, 58, 475-483. doi:10.1080/009841099157106

[29]   Sunderman Jr., F.W., Marzouk, A., Hopfer, S.M., Zaharia, O. and Reid, M.C. (1985) Increased lipid peroxidation in tissues of nickel chloride-treated rats. Annals of Clinical and Laboratory Science, 15, 229-236.

[30]   Janicka, K. and Cempel, M. (2001) Lipid peroxidation and selected antioxidants in rat liver after oral exposure to nickel (II) chloride. Bromato-logia i Chemia Toksykologiczna, 34, 291-295.

[31]   Athar, M., Hasan, S.K. and Srivastava, R.C. (1987) Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxi-dation: Implications for nickel carcinogenesis. Biochemical and Biophysical Research Communications, 147, 1276-1281. doi:10.1016/S0006-291X(87)80208-5

[32]   Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for Nickel. Department of Health and Human Services, Public Health Service, Atlanta, 95-107.

[33]   Misra, M., Rodriguez, R.E. and Kasprzak, K.S. (1990) Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology, 64, 1-17. doi:10.1016/0300-483X(90)90095-X

[34]   M’Bemba-Meka, P., Lemieux, N. and Chakrabarti, S.K. (2005) Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel sulphate-induced human lymphocyte death in vitro. Chemico-Biological Interactions, 156, 69-80. doi:10.1016/j.cbi.2005.07.004

[35]   Ferreccio, C., Gonzalez, P.C., Milosavjlevic, S.V., Marshall, G.M. and Sancha, A. (1998) Lung cancer and arsenic exposure in drinking water: A case control study in northern Chile. Cadernos de Saude Publica, 14, 193-198. doi:10.1590/S0102-311X1998000700021

[36]   Halliwell, B. and Chirico, S. (1993) Lipid peroxidation: Its mechanism, measurement, and significance. American Journal of Clinical Nutrition, 57, 715-724.

[37]   Gagliano, N., Dalle, D.I., Torri, C., Migliori, M., Grizzi, F., Milzani, A., Filippi, C., Annoni, G., Colombo, P., Costa, F., Cava, G.G., Bertelli, A.A.E., Giovannini, L. and Gioia, M. (2006) Early cytotoxic effects of Ochratoxin A in rat liver: A morphological, biochemical and molecular study. Toxicology, 225, 214-224. doi:10.1016/j.tox.2006.06.004

[38]   Aw, T.Y. (2005) Intestinal glutathione: Determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicology and Applied Pharmacology, 204, 320-328. doi:10.1016/j.taap.2004.11.016

[39]   Freeman, B.A. and Crapo, J.D. (1982) Biology of disease: Free radicals and tissue injury. Laboratory Investigation, 47, 412-426.

[40]   Flohe, L., Beckmann, R., Giertz, H. and Loschen, G. (1985) Oxygen-centered free radicals as mediators of inflammation. In: Sies, H. Ed., Oxidative Stress, Academic Press, New York, 405-437.

[41]   Janero, D.R. (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9, 515-540. doi:10.1016/0891-5849(90)90131-2

[42]   Chen, J.J. and Yu, B.P. (1994) Alteration in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology and Medicine, 17, 411-418. doi:10.1016/0891-5849(94)90167-8

[43]   Marnett, L.J. (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutation research, 424, 83-95. doi:10.1016/S0027-5107(99)00010-X

 
 
Top