Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA)

Affiliation(s)

Social Networks Research Group, John Jay College CUNY, New York, USA.

National Development Research Institute, New York, USA..

Social Networks Research Group, John Jay College CUNY, New York, USA.

National Development Research Institute, New York, USA..

Abstract

Recent interest by physicists in
social networks and disease transmission factors has prompted debate over the topology
of degree distributions in sexual networks. Social network researchers have
been critical of “scale-free” Barabasi-Albert approaches, and
largely rejected the preferential attachment, “rich-get-richer” assumptions that underlie that model.
Instead, research on sexual networks has pointed to the importance of homophily
and local sexual norms in dictating degree distributions, and thus disease
transmission thresholds. Injecting Drug User (IDU) network topologies may
differ from the emerging models of sexual networks, however. Degree
distribution analysis of a Brooklyn, NY, IDU network indicates a different
topology than the spanning tree configurations discussed for sexual networks,
instead featuring comparatively short cycles and high concurrency. Our findings
suggest that IDU networks do in some ways conform to a “scale-free” topology,
and thus may represent “reservoirs” of potential infection despite seemingly low
transmission thresholds.

Cite this paper

K. Dombrowski, R. Curtis, S. Friedman and B. Khan, "Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA),"*World Journal of AIDS*, Vol. 3 No. 1, 2013, pp. 1-9. doi: 10.4236/wja.2013.31001.

K. Dombrowski, R. Curtis, S. Friedman and B. Khan, "Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA),"

References

[1] R. Albert and A.-L. Barabasi, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, Vol. 74, No. 1, 2002, pp. 47-97. doi:10.1103/RevModPhys.74.47

[2] P. S. Bearman, J. Moody and K. Stovel, “Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks,” American Journal of Sociology, Vol. 110, No. 1, 2004, pp. 44-91. doi:10.1086/386272

[3] S. R. Friedman, M. Bolyard, P. Mateu-Gelabert, P. Goltzman, M. P. Pawlowicz, D. Z. Singh, G. Touze, D. Rossi, C. Maslow, M. Sandoval and P. L. Flom, “Some Data-Driven Reflections on Priorities in AIDS Network Research,” AIDS and Behavior, Vol. 11, No. 5, 2007, pp. 641-651.

[4] S. R. Friedman, R. Curtis, A. Neaigus, B. Jose and D. C. Des Jarlais, “Social Networks, Drug Injectors’ Lives, and HIV/AIDS,” Kluwer Academic/Plenum Publishers, New York, 1999.

[5] R. Albert, H. Jeong and A.-L. Barabasi, “Error and Attack Tolerance of Complex Networks,” Nature, Vol. 406, No. 6794, 2000, pp. 378-382. doi:10.1038/35019019

[6] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509

[7] Z. Dezso and A.-L. Barabasi, “Halting Viruses in ScaleFree Networks,” Physical Review E, Vol. 65, No. 5, 2002, Article ID: 055103(R).
doi:10.1103/PhysRevE.65.055103

[8] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks: From Biological Nets to the Internet and WWW,” Oxford University Press, New York, 2003.

[9] A.-L. Barabasi, “Linked,” Plume Books, New York, 2003.

[10] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Aberg, “The Web of Human Sexual Contacts,” Nature, Vol. 411, 2001, pp. 907-908.
doi:10.1038/35082140

[11] M. E. J. Newman, “Spread of Epidemic Diseases on Networks,” Physical Review E, Vol. 66, No. 1, 2002, Article ID: 016128. doi:10.1103/PhysRevE.66.016128

[12] J. H. Jones and M. S. Handcock, “Social Networks (Communication Arising): Sexual Contacts and Epidemic Thresholds,” Nature, Vol. 423, No. 6940, 2003, pp. 605-606. doi:10.1038/423605a

[13] A. Schneeberger, R. Nat, C. Mercer, S. Greggson, N. Ferguson, C. Nyamukapa, R. Anderson, A. Johnson and G. Garnett, “Scale-Free Networks and Sexually Transmitted Diseases,” Sexually Transmitted Diseases, Vol. 31, No. 6, 2004, pp. 380-387.
doi:10.1097/00007435-200406000-00012

[14] F. Liljeros, C. R. Edling, H. E. Stanley, Y. Aberg and L. A. N. Amaral, “Social Networks (Communication Arising): Sexual Contacts and Epidemic Thresholds,” Nature, Vol. 423, No. 6940, 2003, p. 606. doi:10.1038/423606a

[15] D. Hamilton and M. S. Handcock, “Degree Distributions of Sexual Networks: Should We Buy Scale Free?” Paper Presented at the International Sun Belt Social Network Conference, Vancouver, May 2006.

[16] S. R. Friedman, A. Neigus, B. Jose, R. Curtis, M. Goldstein, G. Ildefonso, R. B. Rothenberg and D. C. Des Jarlais, “Sociometric Risk Networks and Risk for HIV Infection,” American Journal of Public Health, Vol. 87, No. 8, 1997, pp. 1289-1296. doi:10.2105/AJPH.87.8.1289

[17] S. R. Friedman, B. J. Kottiri, A. Neaigus, R. Curtis, S. H. Vermund and D. C. Des Jarlais, “Network-Related Mechanisms May Help Explain Long-Term HIV-1 Seroprevalence Levels That Remain High but Do Not Approach Population-Group Saturation,” American Journal of Epidemiology, Vol. 152, No. 10, 2000, pp. 913-922.
doi:10.1093/aje/152.10.913

[18] R. Curtis, S. R. Friedman, A. Neaigus, B. Jose, M. Goldstein and G. Ildefonso, “Street-Level Drug Markets: Network Structure and HIV Risk,” Social Networks, Vol. 17, No. 3-4, 1995, pp. 229-249.
doi:10.1016/0378-8733(95)00264-O

[19] P. V. Marsden, “Recent Developments in Network Measurement,” In: P. Carrington, J. Scott and S. Wasserman, Eds., Models and Methods in Social Network Analysis, Cambridge University Press, Cambridge, 2005, pp. 8-30.
doi:10.1017/CBO9780511811395.002

[20] G. Ildefonso, S. Friedman, R. Curtis, A. Neaigus, B. Jose, and D. C. Des Jarlais, “Chapter 13. Appendix: Methods for Assigning Linkages in Studies of Drug Injector Networks,” In: S. Friedman, Ed., Social Networks, Drug Injectors’ Lives, and HIV/AIDS, Kluwer Academic/Plenum Publishers, Berlin, 1999, pp. 239-254.

[21] A. Neigus, S. R. Friedman and M. Goldstein, “Using Dyadic Data for a Network Analysis of HIV Infection and Risk Behaviors among Injecting Drug Users,” In: R. Needle, Ed., Social Networks, Drug Abuse and HIV Transmission, National Institute on Drug Abuse, Rockville, 1995, pp. 20-37.

[22] D. J. Watts, “Small Worlds,” Princeton University Press, Princeton, 1999.

[23] R. Pastor-Satorras and A. Vespignani, “Epidemic Spreading in Scale-Free Networks,” Physical Review Letters, Vol. 86, No. 14, 2001, pp. 3200-3203.
doi:10.1103/PhysRevLett.86.3200

[24] R. M. May and A. L. Lloyd, “Infection Dynamics on Scale-Free Networks,” Physical Review E, Vol. 64, No. 6, 2001, Article ID: 066112.
doi:10.1103/PhysRevE.64.066112

[25] S. R. Friedman, P. L. Flom, B. J. Kottiri, J. Zenilman, R. Curtis, A. Neaigus, M. Sandoval, T. Quinn and D. C. Des Jarlais, “Drug Use Patterns and Infection with Sexually Transmissible Agents among Young Adults in a HighRisk Neighborhood in New York City,” Addiction, Vol. 98, No. 2, 2003, pp. 159-169.
doi:10.1046/j.1360-0443.2003.00271.x

[26] R. Curtis, “The Improbable Transformation of Inner-City Neighborhoods: Crime, Violence, Drugs and Youth in the 1990s,” The Journal of Criminal Law and Criminology, Vol. 88, No. 4, 1998, pp. 1233-1276.
doi:10.2307/1144256

[27] R. Curtis, “The War on Drugs in Brooklyn, New York: Street-Level Drug Markets and the Tactical Narcotics Team,” Doctoral Dissertation, Columbia University, New York, 1996.

[28] R. Curtins and M. Sviridoff, “The Social Organization of Street-Level Drug Markets and Its Impact on the Displacement Effect,” In: R. McNamara, Ed., Crime Displacement: The Other Side of Prevention, Cummings and Hathaway Publishers, New York, 1994, pp. 155-171.

[29] R. Curtis, “The Changing Drug Scene in Brooklyn, NY Neighborhoods,” In: A. Karmen, Ed., Crime and Justice in New York City, McGraw Hill, New York, 1998.

[30] K. Dombrowski, B. Khan, K. McLean, R. Curtis, T. Wendel, E. Misshula and S. Friedman, “A Re-Examination of Connectivity Trends via Exponential Random Graph Modeling in Two IDU Risk Networks,” Substance Use and Misuse, Vol. 49, 2013.