Modified Adomain Decomposition Method for the Generalized Fifth Order KdV Equations

Huda O. Bakodah^{*}

Show more

References

[1] H. Nagashima, “Experiment on Solitary Waves in the Nonlinear Transmission Line Discribed by the Equation u_{t}+uu_{ζ}-u_{ζζζζζ}=0,” Journal of the Physical Society of Japan, Vol. 47, 1979, pp. 1387-1388. doi:10.1143/JPSJ.47.1387

[2] Y. Yamaoto and E. Takizawa, “On a Solution on Non-Linear Time—Evolution Equation of Fifth-Order,” Journal of the Physical Society of Japan, Vol. 50, 1981, pp. 1421-1422. doi:10.1143/JPSJ.50.1421

[3] T. Kawahrara, “Oscillatary Solitary Waves in Dispersive Media,” Journal of the Physical Society of Japan, Vol. 33, 1972, pp. 260-264. doi:10.1143/JPSJ.33.260

[4] J. P. Boyd, “Solitons from Sine Waves: Analytical and Numerical Methods for Non-Integrable Solitary and Conoidal Waves,” Physica 21D, 1986, pp. 227-246.

[5] S. E. Haupt and J. P. Boyd, “Modelling Nonlinear Resonance: A Modification to the Stokes Perturbation Expansion,” Wave Motion, Vol. 10, No. 1, 1988, pp. 83-98.

[6] K. Djidjeli, W. G. Price, E. H. Twizell and Y. Wang, “Numerical Methods for the Soltution of the Third and Fifth-Order Disprsive Korteweg-De Vries Equations,” Journal of Computational and Applied Mathematics, Vol. 58, No. 3, 1995, pp. 307-336.
doi:10.1016/0377-0427(94)00005-L

[7] A. M. Wazwaz, “Analytic Study on the Generalized KdV Equation: New Solution and Periodic Solutions,” Elsevier, Amsterdam, 2006.

[8] M. T. Darvishi and F. Khani, “Numerical and Explicit Solutions of the Fifth Order Korteweg-De Vries Equations,” Elsevier, Amsterdam, 2007.

[9] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer Academic Publisher, Dordrecht, 1994.

[10] D. Kaya, “The Use of Adomian Decomposition Methods for Solving a Specific Nonlinear Partial Differential Equations,” Bulletin of the Belgian Mathematical Society Simon Stevin, Vol. 9, No. 3, 2002, pp. 343-349.

[11] G. Adomian, “The Fifth-Order Korteweg-De Vries Equation,” International Journal of Mathematics and Mathematical Sciences, Vol. 19, No. 2, 1996, p. 415.
doi:10.1155/S0161171296000592

[12] D. Kaya, “An Explicit and Numerical Solutions of Some Fifth-Order KdV Equation by Decomposition Method,” Applied Mathematics and Computation, Vol. 144, No. 2-3, 2003, pp. 353-363. doi:10.1016/S0096-3003(02)00412-5

[13] D. Kaya, “An Application for the Higher Order Modified KdV Equation by Decomposition Method,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, No. 6, 2005, pp. 693-702.
doi:10.1016/j.cnsns.2003.12.009

[14] D. Kaya and S. M. El-Sayed, “On a Generalized Fifth Order KdV Equations,” Physics Letters A, Vol. 310, No. 1, 2003, pp. 44-51. doi:10.1016/S0375-9601(03)00215-9

[15] M. A. Helal and M. S. Mehanna, “A Comparative Study between Two Different Methods for Solving the General Korteweg-De Vries Equation (GKDV),” Chaos, Solitons & Fractals, Vol. 33, No. 3, 2007, pp. 725-739.
doi:10.1016/j.chaos.2006.11.011

[16] A. M. Wazwaz, “A Reliable Technique for Solving Linear and Nonlinear Schrodinger Equations by Adomian Decompostion Method,” Bulletin of the Institute of Mathematics, Vol. 29, No. 2, 2001, pp. 125-134.

[17] A. M. Wazwaz and S. M. El-Sayed, “A New Modification of the Adomian Decoomposition Method for Linear and Nonlinear Operators,” Applied Mathematics and Computations, Vol. 122, 2001, pp. 393-405.

[18] A. M. Wazwaz, “Partial Differential Equations and Solitary Waves Theory,” Higher Education Press, Beijing; Spinger-Verlag, Berlin, 2009.

[19] K. Sawada and T. Kotera, “A Method for Finding N-Soliton Solutions of the KdV. Equation and the KbV-Like Equation,” Progress of Theoretical Physics, Vol. 51, No. 5, 1974, pp. 1355-1367. doi:10.1143/PTP.51.1355

[20] P. J. Coudery, R. K. Dodd and J. D. Gibbon, “A New Hierarchy of Korteweg-De Vries Equations,” Proceedings of the Royal Society A, Vol. 351, No. 1666, 1976, pp. 407-422. doi:10.1098/rspa.1976.0149

[21] P. D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves,” Communications on Pure and Applied Mathematics, Vol. 21, No. 5, 1968, pp. 467-490.
doi:10.1002/cpa.3160210503

[22] D. J. Kaup, “On the Iverse Scattering Problem for Cubic Eigenvalue Problems of the Class
Ψ_{xxx}+6QΨ_{x}+6RΨ=λΨ,” Studies in Applied Mathematics, Vol. 62, 1980, pp. 189-216.

[23] B. A. Kuperschmidt, “A Super KdV Equation: An Integral System,” Physics Letters A, Vol. 102, No. 5-6, 1984, pp. 213-215. doi:10.1016/0375-9601(84)90693-5

[24] M. Ito, “An Extension of Nonlinear Evolution Equations of the KdV (mKdV) Type of Higher Orders,” Journal of the Physical Society of Japan, Vol. 49, No. 2, 1980, pp. 771-778. doi:10.1143/JPSJ.49.771

[25] Y. Lei, Z. Fajiang and W. Yinghai, “The Homogeneous Balance Method, Lax Pair Hirota Transformation and a General Fifth Order KdV Equation,” Chaos Solutions Fractals, Vol. 13, 2002, p. 337.