A Grobner Bases Approach to the Detection of Improperly Parameterized Rational Curve

Show more

References

[1] D. Manocha and J. F. Canny, “Rational Curves with Polynomial Parameterization,” Computer-Aided Design, Vol. 23, No. 9, 1991, pp. 645-652.
doi:10.1016/0010-4485(91)90042-U

[2] T. W. Sederberg, “Improperly Parametrized Rational Curves,” Computer Aided Geometric Design, Vol. 3, No. 1, 1986, pp. 67-75. doi:10.1016/0167-8396(86)90025-7

[3] M. V. Hoeij, “Rational Parametrizations of Algebraic Curves Using a Canonical Divisor,” Journal of Symbolic Computation, Vol. 23, No. 2-3, 1997, pp. 209-227.
doi:10.1006/jsco.1996.0084

[4] T. Recio and J. R. Sendra, “Real Parametrizations of Real Curves,” Journal of Symbolic Computation, Vol. 23, No. 2-3, 1997, pp. 241-254. doi:10.1006/jsco.1996.0086

[5] J. R. Sendra and F. Winkler, “Parameterization of Algebraic Curves over Optimal Field Extensions,” Journal of Symbolic Computation, Vol. 11, 2008, p. 1-000.

[6] J. R. Sendra and F. Winkler, “Symbolic Parameterization of Curves,” Journal of Symbolic Computation, Vol. 12, No. 6, 1991, pp. 607-631.

[7] J. R. Sendra and F. Winkler, “Tracing Index of Rational Curve Parameterizations”.
www.risc.jku.at/publications/download/risc_264/Nr.17_final-1.pdf

[8] G. Salmon, “Higher Plane Curves,” G.E. Stechert and Co., New York, 1879, 30 p.

[9] R. J. Walker, “Algebraic Curves,” Princeton, 1950, 67 p.

[10] D. A. Cox, J. Little and D. O’Shea, “Ideals, Varieties and Algorithms,” Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd Edition, Springer, Berlin, 1991, pp. 49-168.

[11] H. Hong and J. Schicho, “Algorithms for Trigonometric Curves (Simplification, Implicitization and Parameterization),” Technical Report, 1997.
http://www.risc.uni-linz/people/hhong-jschicho

[12] J. Harris, “Graduate Texts in Mathematics,” Algebraic Geometry: A First Course, Springer-Verlag, Berlin, 1992, pp. 3-16.

[13] L. Buse and T. L. Ba, “Matrix-Based Implicit Representation of Rational Algebraic Curves and Applications,” Computer Aided Geometric Design, Vol. 27, No. 9, 2010, pp. 681-699. doi:10.1016/j.cagd.2010.09.006

[14] J. W. Archbold, “Introduction to the Algebraic Geometry of a Plane,” Edward Arnold & Co., London, 1948.

[15] J. Li, “General Explicit Difference Formulas for Numerical Differentiation,” Journal of Computational and Applied Mathematics, Vol. 183, No. 1, 2005, pp. 29-52.
doi:10.1016/j.cam.2004.12.026