AMPC  Vol.3 No.1 , March 2013
Theoretical Investigation of Electronic and Optical Properties of Si/SiGe Quantum Cascade Structures
ABSTRACT

This paper reviews the basic properties of the SiGe alloy, presents some new results on its electronic and optical properties, and discusses the approach that has been followed to model quantum wells containing SiGe layers for applications in quantum cascade lasers. The shape of the confining potential, the subband energies and their eigen envelope wave functions are calculated by solving a one-dimensional Schr?dinger equation. The calculations of optical parameters are used to optimize the Si/SiGe quantum cascade structures. Our results are found to be in good agreement with other calculations.


Cite this paper
K. Zellat, B. Soudini and S. Cheikh, "Theoretical Investigation of Electronic and Optical Properties of Si/SiGe Quantum Cascade Structures," Advances in Materials Physics and Chemistry, Vol. 3 No. 1, 2013, pp. 19-24. doi: 10.4236/ampc.2013.31004.
References
[1]   R. F. Kazarinov and R. A. Suris. “Possibility of the Amplification of Electromagnetic Waves in a Semi-Conductor with a Superlattice,” Soviet Physics, Semi-Conductors, Vol. 5, No. 4, 1971, p. 707.

[2]   J. Faist, F. Capasso, D. Sivco ,C. Sirtori, A. L. Hutchinson and A. Y. Cho, “Quantum Cascade Laser,” Science, Vol. 264, No. 5158, 1994, pp. 553-556. doi:10.1126/science.264.5158.553

[3]   J. Faist, F. Capasso, C. Sirtori, D. Sivco and A. Cho, “Intersubband Transitions in Quantum Wells: Physics and Device Applications II,” Academic Press, New York, 2000, pp. 1-83.

[4]   F. Capasso, C. Gmachl, D. L. Sivco and A. Y. Cho. Physics World, Vol. 12, 1999, p. 27.

[5]   J. Faist, M. Beck, T. Aellen and E. Gini, “Quantum-Cascade Lasers Based on a Bound-to-Continuum Transition,” Applied Physics Letters, Vol. 78, No. 2, 2001, pp. 147-149.

[6]   H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz and C. Sirtori, “300 K Operation of a GaAs-Based Quantum-Cascade Laser at λ ≈ 9 μm,” Applied Physics Letters, Vol. 78, No. 22, 2001, pp. 3529-3531.

[7]   C. J. Otten, “For Quantum Confinement, Size Matters, But So Does Shape,” Washington University, St. Louis, 2003.

[8]   M. Fukuda, “Optical Semiconductor Devices,” John Wiley and Sons, Inc., New York, 1999.

[9]   F.-Q. Liu, L. Li, L. J. Wang, J. Q. Liu, W. Zhang, Q. D. Zhang, W. F. Liu, Q. Y. Lu and Z. Wang, “Solid Source MBE Growth of Quantum Cascade Lasers,” Applied Physics A, Vol. 97, No. 3, 2009, pp. 527-532. doi:10.1007/s00339-009-5423-8

[10]   C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist and U. Oesterle, “GaAs/AlxGa1-xAs Quantum Cascade Lasers,” Applied Physics Letters, Vol. 73, No. 24, 1998, p. 3486. doi:10.1063/1.122812

[11]   F. Capasso, C. Gmachl, A. Tredicucci, A. L. Hutchinson, D. L. Sivco and A. Y. Cho, “High Performance Quantum Cascade Lasers,” Optics and Photonics News, Vol. 10, No. 10, 1999, p. 31. doi:10.1364/OPN.10.10.000031

[12]   C. Gmachl, F. Capasso, R. K. Rohler, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon and A. Y. Cho, “Mid-Infrared Tunable Quantum Cascade Lasers for Gas-Sensing Applications,” IEEE Circuits Devices, Vol. 16, No. 3, 2000, pp. 10-18. doi:10.1109/101.845908

[13]   C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodword, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson and A. Y. Cho, “Quantum-Cascade Laser Measurements of Stratospheric Methane and Nitrous Oxide,” Applied Optics, Vol. 40, No. 3, 2001, p. 321. doi:10.1364/AO.40.000321

[14]   G. Dehlinger, L. Diehl, U. Genser, H. Sigg, J. Faist, K. Ensslin, D. Grutzmacher and E. Muller. Science, Vol. 290, p. 2277.

[15]   I. Bormann, K. Brunner, S. Hackenbuchner, G. Zandler, G. Abstreiter, S. Schmult and W. Wegscheider, “Nonradiative Relaxation Times in Diagonal Transition Si/SiGe Quantum Cascade Structures,” Applied Physics Letters, Vol. 80, 2003, p. 5371.

[16]   I. Bormann, K. Brunner, S. Hackenbuchner, G. Abstreiter, S. Schmult and W. Wegscheider, “Nonradiative Relaxation Times in Diagonal Transition Si/SiGe Quantum Cascade Structures,” Applied Physics Letters, Vol. 83, No. 26, 2003, p. 5371. doi:10.1063/1.1631381

[17]   J. C. Phillips, “Bonds and Bands in Semiconductors,” Academic Press, New York, 1973.

[18]   A. R. Jivani, P. N. Gajjar and A. R. Jani, “Total Energy, Equation of States and Bulk Modulus of Si and Ge,” Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 5, No. 3, 2002, pp. 243-246.

[19]   T. Soma, “The Electronic Theory of SiGe Solid Solutions,” Physica Status Solidi (b), Vol. 95, No. 2, 1979, pp. 427-431. doi:10.1002/pssb.2220950212

[20]   S. Gonazalez, “Empirical Pseudopotential Method for the Band Structure Calculations of Strained Silicon Germanium Materials,” Ph.D. Thesis, Arizona State University, Arizona, 2001.

[21]   C. J. Williams, “Impact ionization and Auger Recombination in SiGe Heterostructures,” Ph.D. Thesis, University of Newcastle, Tyne, 1996.

[22]   K. Zellat, B. Soudini, N. Sekkal and S. M. Ait Cheikh, “Computational Investigation of Electronic and Optical Properties of Si, Ge, and Si1?xGex Alloys Using the FP-LMTO Method Augmented by a Plane-Wave Basis,” American Journal of Condensed Matter Physics, Vol. 2, No. 1, 2012, pp. 1-10. doi:10.5923/j.ajcmp.20120201.01

[23]   S. Y. Savrasov, “Linear-Response Theory and Lattice Dynamamics: A Muffin-Tin-Orbital Approach,” Physical Review B, Vol. 54, No. 23, 1996, pp. 16470-16486. doi:10.1103/PhysRevB.54.16470

[24]   S. Savrasov and D. Savrasov, “Full-Potential Linear-Muffin-Tin-Orbital Method for Calculating Total Energies and Forces,” Physical Review B, Vol. 46, No. 19, 1992, pp. 12181-12195. doi:10.1103/PhysRevB.46.12181

[25]   D. Rached, M. Rabah, N. Benkhettou, M. Driz and B. Soudini, “Calculated Band Structures and Optical Properties of Lead Chalcogenides PbX (X = S, Se, Te) under Hydrostatic Pressure,” Physica B: Physics of Condensed Matter, Vol. 337, No. 1-4, 2003, pp. 394-403. doi:10.1016/S0921-4526(03)00443-5

[26]   R. C. Iotti and F. Rossi, “Nature of Charge Transport in Quantum-Cascade Laser,” Physical Review Letters, Vol. 87, No. 14, 2001, Article ID: 146603. doi:10.1103/PhysRevLett.87.146603

[27]   F. Compagnone, A. DiCarlo and P. Lugli, “Monte Carlo Simula-tion of Electron Dynamics in Superlattice Quantum Cascade Lasers,” Applied Physics Letters, Vol. 80, No. 6, 2002, p. 920. doi:10.1063/1.1448664

[28]   H. Callebaut, S. Kumar, B. S. Williams, Q. Hu and J. L. Reno, “Importance of Electron-Impurity Scattering for Electron Transport in Terahertz Quantum-Cascade Lasers,” Applied Physics Letters, Vol. 84, No. 5, 2004, p. 645. doi:10.1063/1.1644337

[29]   O. Bonno, J. L. Thobel, and F. Dessenne, “Modeling of Electron-Electron Scattering in Monte Carlo Simulation of Quantum Cascade Lasers,” Journal of Applied Physics, Vol. 97, No. 4, 2005, Article ID: 043702. doi:10.1063/1.1840100

[30]   D. Indjin, P. Harrison, R. W. Kelsall and Z. Ikoni?, “Self-Consistent Scattering Theory of Transport and Output Characteristics of Quantum Cascade Lasers,” Journal of Applied Physics, Vol. 91, No. 11, 2002, p. 9019. doi:10.1063/1.1474613

[31]   V. D. Jovanovic, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison and E. H. Linfield, “Mechanisms of Dynamic Range Limitations in GaAs/AlGaAs Quantum-Cascade Lasers: Influence of Injector Doping,” Applied Physics Letters, Vol. 86, No. 21, 2005, Article ID: 211117. doi:10.1063/1.1937993

[32]   S. C. Lee and A. Wacker, “Nonequilibrium Green’s function Theory for Transport and Gain Properties of Quantum Cascade Structures,” Physical Review B, Vol. 66, No. 24, 2002, Article ID: 245314. doi:10.1103/PhysRevB.66.245314

[33]   S. C. Lee, F. Banit, M. Woerner and A. Wacker, “Quantum Mechanical Wavepacket Transport in Quantum Cascade Laser Structures,” Physical Review B, Vol. 73, No. 24, 2006, Article ID: 245320. doi:10.1103/PhysRevB.73.245320

[34]   S. R. White and L. J. Sham, “Electronic Properties of Flat-Band Semiconductor Heterostructures,” Physical Review Letters, Vol. 47, No. 12, 1981, pp. 879-882. doi:10.1103/PhysRevLett.47.879

[35]   S. L. Chuang, “Physics of Optoelectronic Devices,” Wiley Interscience, New York, 1995.

[36]   P. Harrison, “Quantum Wells, Wires and Dots,” 2nd Edition, Wiley, Chichester, 2005.

[37]   G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher and E. Müller, “Intersubband Electroluminescence from SiGe Quantum Cascade Structures,” Science, Vol. 290, 2000, p. 2277.

 
 
Top