AMPC  Vol.3 No.1 , March 2013
A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties
ABSTRACT

With the features of convenience and eco-friendly, the low-temperature solid-state reaction synthesis was successfully developed as a new approach to prepare quantum-sized ZnS nanocrystals. One major achievement is that the size and shape of ZnS nanocrystals can be tuned by adjusting the surfactant and its feed. The UV-Vis absorption spectra of quasispherical and one-dimensional quantum-sized ZnS nanocrystals all showed a blue-shift from the bulk counterpart, indicating large quantum confinement effects of ZnS nanocrystals. These ZnS nanocrystals all showed well-defined excitonic emission features. Contrastive studies on photoluminescence performances indicated that the bandedge emission experienced only the size-dependent quantum confinement effect, while the trap-state emission experienced the size- and shape-dependences. So we can design a purposeful synthesis route to ZnS nanocrystals with target luminescence emission performances.

 


Cite this paper
P. Hu, Y. Cao, Y. Lou, B. Lu, M. Shao, J. Ni and M. Cao, "A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties," Advances in Materials Physics and Chemistry, Vol. 3 No. 1, 2013, pp. 10-18. doi: 10.4236/ampc.2013.31003.
References
[1]   L. E. Brus, “A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites,” Journal of Chemical Physics, Vol. 79, No. 11, 1983, pp. 5566-5571. doi:10.1063/1.445676

[2]   M. Nirmal and L. E. Brus, “Luminescence Photophysics in Semiconductor Nanocrystals,” Accounts of Chemical Research, Vol. 32, No. 5, 1999, pp. 407-414. doi:10.1021/ar9700320

[3]   X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals,” Nature, Vol. 404, No. 6773, 2000, pp. 59-61. doi:10.1038/35003535

[4]   V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science, Vol. 290, No. 5490, 2000, pp. 314-317. doi:10.1126/science.290.5490.314

[5]   X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, Vol. 307, No. 5709, 2005, pp. 538-544. doi:10.1126/science.1104274

[6]   T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim and K. Kim, “Full-Colour Quantum Dot Displays Fabricated by Transfer Printing,” Nature Photonics, Vol. 5, No. 3, 2011, pp. 176-182. doi:10.1038/nphoton.2011.12

[7]   C. L. Cowles and X. S. Zhu, “Sensitive Detection of Cardiac Biomarker Using ZnS Nanoparticles as Novel Signal Transducers,” Biosensors and Bioelectronics, Vol. 30, No. 1, 2011, pp. 342-346. doi:10.1016/j.bios.2011.09.034

[8]   K. E. Sapsford, I. L. Medintz, J. P. Golden, J. R. Deschamps, H. T. Uyeda and H. Mattoussi, “Surface-Immobilized Self-Assembled Protein-Based Quantum Dot Nanoassemblies,” Langmuir, Vol. 20, No. 18, 2004, pp. 7720-7728. doi:10.1021/la049263n

[9]   Y. W. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis and J. Q. Xiao, “Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals,” Journal of the American Chemical Society, Vol. 126, No. 22, 2004, pp. 6874-6875. doi:10.1021/ja048650g

[10]   Y. J. Zhang, H. R. Xu and Q. B. Wang, “Ultrathin Single Crystal ZnS Nanowires,” Chemical Communications, Vol. 46, No. 47, 2010, pp. 8941-8943. doi:10.1039/c0cc02549f

[11]   C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annual Review of Materials Science, Vol. 30, No. 1, 2000, pp. 545-610. doi:10.1146/annurev.matsci.30.1.545

[12]   R. F. Service, “Don’t Sweat the Small Stuff,” Science, Vol. 320, 2008, pp. 1584-1585. doi:10.1126/science.320.5883.1584b

[13]   P. F. Hu and Y. L. Cao, “A New Chemical Route to a Hybrid Nanostructure: Room-Temperature Solid-State Reaction Synthesis of Ag@AgCl with Efficient Photocatalysis,” Dalton Transactions, Vol. 41, No. 29, 2012, pp. 8908-8912. doi:10.1039/c2dt30779k

[14]   S. Kulmala and J. Suomi, “Current Status of Modern Analytical Luminescence Methods,” Analytica Chimica Acta, Vol. 500, No. 1-2, 2003, pp. 21-69. doi:10.1016/j.aca.2003.09.004

[15]   W. G. Becker and A. J. Bard, “Photoluminescence and Photoinduced Oxygen Adsorption of Colloidal Zinc Sulfide Dispersions,” The Journal of Physical Chemistry, Vol. 87, No. 24, 1983, pp. 4888-4893. doi:10.1021/j150642a026

[16]   N. Chestnoy, T. D. Harris, R. Hull and L. E. Brus, “Luminescence and Photophysics of CdS Semiconductor Clusters: The Nature of the Emitting Electronic State,” The Journal of Physical Chemistry, Vol. 90, No. 15, 1986, pp. 3393-3399. doi:10.1021/j100406a018

[17]   S. Wageh, Z. S. Ling and X. X. Rong, “Growth and Optical Properties of Colloidal ZnS Nanoparticles,” Journal of Crystal Growth, Vol. 255, No. 3-4, 2003, pp. 332-337. doi:10.1016/S0022-0248(03)01258-2

[18]   J. H. Yu, J. Joo, H. M. Park, S. Baik, Y. W. Kim, S. C. Kim and T. Hyeon, “Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism,” Journal of the American Chemical Society, Vol. 127, No. 15, 2005, pp. 5662-5670. doi:10.1021/ja044593f

 
 
Top