AJCC  Vol.2 No.1 , March 2013
Detection and Projections of Climate Change in Rio de Janeiro, Brazil
Abstract: A study on the detection and future projection of climate change in the city of Rio de Janeiro is here presented, based on the analysis of indices of temperature and precipitation extremes. The aim of this study is to provide information on observed and projected extremes in support of studies on impacts and vulnerability assessments required for adaptation strategies to climate change. Observational data from INMET’s weather stations and projections from INPE’s Eta- HadCM3 regional model are used. The observational analyses indicate that rainfall amount associated with heavy rain events is increasing in recent years in the forest region of Rio de Janeiro. An increase in both the frequency of occurrence and in the rainfall amount associated with heavy precipitation are projected until the end of the 21st Century, as are longer dry periods and shorter wet seasons. In regards to temperature, a warming trend is noted (both in past observations and future projections), with higher maximum air temperature and extremes. The average change in annual maximum (minimum) air temperatures may range between 2℃and 5℃(2℃and 4℃) above the current weather values in the late 21st Century. The warm (cold) days and nights are becoming more (less) frequent each year, and for the future climate (2100) it has been projected that about 40% to 70% of the days and 55% to 85% of the nights will be hot. Additionally, it can be foreseen that there will be no longer cold days and nights.
Cite this paper: Dereczynski, C. P., Luiz Silva, W. and Marengo, J. A. (2013) Detection and Projections of Climate Change in Rio de Janeiro, Brazil. American Journal of Climate Change, 2, 25-33. doi: 10.4236/ajcc.2013.21003.

[1]   T. Karl, N. Nicholls and J. Gregory, “The Coming Climate,” Scientific American, Vol. 276, 1997, pp. 54-59. doi:10.1038/scientificamerican0597-78

[2]   D. Easterling, et al., “Climate Extremes: Observations, Modeling and Impacts,” Science, Vol. 289, No. 5487, 2000, pp. 2068-2074. doi:10.1126/science.289.5487.2068

[3]   G. Meehl, et al., “An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts and Model Projections,” Bulletin of the American Meteorological Society, Vol. 81, No. 3, 2000, pp. 413-416. doi:10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2

[4]   P. Frich, et al., “Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century,” Climate Research, Vol. 19, No. 3, 2002, pp. 193-212. doi:10.3354/cr019193

[5]   L. A. Vincent, et al., “Observed Trends in Indices of Daily Temperature Extremes in South America 1960 2000,” Bulletin of the American Meteorological Society, Vol. 18, No. 23, 2005, pp. 5011-5023.

[6]   L. V. Alexander, et al., “Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation,” Journal of Geophysical Research, Vol. 111, No. D5, 2006, pp. 1-22. doi:10.1029/2005JD006290

[7]   M. R. Haylock, et al., “Trends in Total and Extreme South American Rainfall in 1960-2000 and Links with Sea Surface Temperature,” Journal of Climate, Vol. 19, No. 8, 2006, pp. 1490-1512. doi:10.1175/JCLI3695.1

[8]   C. Tebaldi, K. Hayhoe, J. Arblaster and G. Meehl, “Going to the Extremes: An Intercomparison of Model-simulated Historical and Future Changes in Extreme Events,” Climatic Change, Vol. 79, No. 3-4, 2006, pp. 185-211. doi:10.1007/s10584-006-9051-4

[9]   G. Obregón and J. A. Marengo, “Mudan?as Climáticas Globais e Seus Efeitos Sobre a Biodiversidade: Caracteri za??o do Clima no Século XX no Brasil: Tendências de Chuvas e Temperaturas Médias e Extremas,” Relatório, 2007.

[10]   J. A. Marengo, R. Jones, L. M. Alves and M. C. Valverde, “Future Change of Temperature and Precipitation Extremes in South America as Derived from the PRECIS Regional Climate Modeling System,” International Journal of Climatology, Vol. 29, No. 15, 2009, pp. 2241-2255. doi:10.1002/joc.1863

[11]   J. A. Marengo, M. Rusticucci, O. Penalba and M. Renom, “An Intercomparison of Observed and Simulated Extreme Rainfall and Temperature Events during the Last Half of the Twentieth Century: Part 2: Historical Trends,” Climatic Change, Vol. 98, No. 3-4, 2010, pp. 509-529. doi:10.1007/s10584-009-9743-7

[12]   M. Rusticcuci, J. A. Marengo, O. Penalba and M. Renom, “An Intercomparison of Model-Simulated in Extreme Rainfall and Temperature Events during the Last Half of the Twentieth Century. Part 1: Mean Values and Variability,” Climatic Change, Vol. 98, No. 3-4, 2010, pp. 493 508. doi:10.1007/s10584-009-9742-8

[13]   R. E. Dickinson, R. M. Errico, F. Giorgi and G. T. Bates, “A Regional Climate Model for the Western US,” Climate Change, Vol. 15, No. 3, 1989, pp. 383-422.

[14]   F. Giorgi and T. Bates, “The Climatological Skill of a Regional Model over Complex Terrain,” Monthly Weather Review, Vol. 117, No. 11, 1989, pp. 2325-2347. doi:10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2

[15]   F. Giorgi, “On the Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model,” Journal of Climate, Vol. 3, No. 9, 1990, pp. 941-963. doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2

[16]   H. Kida, T. Koide, H. Sasaki and M. Chiba, “A New Approach to Coupling a Limited Area Model with a GCM for Regional Climate Simulations,” Journal of the Meteorological Society of Japan, Vol. 69, No. 6, 1991, pp. 723-728.

[17]   R. G. Jones, et al., “Generating High Resolution Climate Change Scenarios Using PRECIS,” Report, Met Office Hadley Centre, Exeter, 2004.

[18]   J. A. Marengo, et al., “Future Change of Climate in South America in the Late Twenty-First Century: Intercomparison of Scenarios from Three Regional Climate Models,” Climate Dynamics, Vol. 35, No. 6, 2009, pp. 1073-1097.

[19]   R. D. Garreaud and M. Falvey, “The Coastal Winds off Western Subtropical South America in Future Climate Scenarios,” International Journal of Climatology, Vol. 29, No. 4, 2008, pp. 543-554.

[20]   W. R. Soares and J. A. Marengo, “Assessments of Moisture Fluxes East of the Andes in South America in a Global Warming Scenario,” International Journal of Climatology, Vol. 29, No. 10, 2008, pp. 1395-1414.

[21]   S. A. Solman, M. N. Nu?ez and M. F. Cabré, “Regional Climate Change Experiments over Southern South Ame rica. I: Present Climate,” Climate Dynamics, Vol. 30, No. 5, 2008, pp. 533-552. doi:10.1007/s00382-007-0304-3

[22]   M. N. Nu?ez, S. A. Solman and M. F. Cabré, “Regional Climate Change Experiments over Southern South America. II: Climate Change Scenarios in the Late Twenty First Century,” Climate Dynamics, Vol. 32, No. 7-8, 2009, pp. 1081-1095. doi:10.1007/s00382-008-0449-8

[23]   L. M. Alves and J. A. Marengo, “Assessment of Regional Seasonal Predictability Using the PRECIS Regional Climate Modeling System over South America,” Theoretical and Applied Climatology, Vol. 100, No. 3-4, 2010, pp. 337-350. doi:10.1007/s00704-009-0165-2

[24]   S. C. Chou, et al., “Downscaling of South America Pre sent Climate Driven by 4-Member HadCM3 Runs,” Climate Dynamics, Vol. 38, No. 3-4, 2011, pp. 635-653.

[25]   J. A. Marengo, et al., “Development of Regional Future Climate Change Scenarios in South America Using the Eta CPTEC/HadCM3 Climate Change Projections: Climatology and Regional Analyses for the Amazon, S?o Francisco and the Parana River Basins,” Submitted to Climate Dynamics, Vol. 38, No. 9-10, 2011, pp. 1829- 1848.?

[26]   F. Mesinger, et al., “An Upgraded Version of the Eta Mo del,” Meteorology and Atmospheric Physics, Vol. 116, No. 3-4, 2012, pp. 63-79. doi:10.1007/s00703-012-0182-z

[27]   C. Gordon, et al., “Simulation of SST, Sea Ice Extents and Ocean Heat Transport in a Version of the Hadley Centre Coupled Model without Flux Adjustments,” Climate Dynamics, Vol. 16, No. ,2-3 2000, pp. 47-168. doi:10.1007/s003820050010

[28]   N. Nakicenovic, et al., “Special Report on Emission Scenarios,” Cambridge University Press, Cambridge, 2000, p. 599.

[29]   X. Zhang and F. Yang, “RClimDex (1.0)—User Manual,” Climate Research Branch Environment Canada Downs view, Ontario, 2004.

[30]   R. Sneyers, “Sur l’Analyse Statistique des Series Dóbser vations,” Vol. 192, Organisation Méteorologique Mondial, Gênevè, 1975.

[31]   C. Goossens and A. Berger, “Annual and Seasonal Climatic Variations over the Northern Hemisphere and Europe during the Last Century,” Annales Geophysicae, Vol. 4 No. B4, 1986, pp. 385-400.

[32]   P. K. Sen, “Estimates of the Regression Coefficient Based on Kendall’s Tau,” Journal of American Statistics Association, Vol. 63, No. 324, 1968, pp. 379-1389.

[33]   P. Jourdan, “Caracteriza??o do Regime de Ventos Próxi mo à Superfície na Regi?o Metropolitana do Rio de Janeiro,” Course Completion Paper at the Geoscience Institute Department of Meteorology, Rio de Janeiro, Federal University of Rio de Janeiro, 2007.

[34]   C. P. Dereczynski, J. S. Oliveira and C. O. Machado, “Cli matologia da Precipita??o no Município do Rio de Janeiro,” Revista Brasileira de Meteorologia, Vol. 24, No. 1, 2009, pp. 24-38. doi:10.1590/S0102-77862009000100003

[35]   A. S. Figueiró, “Mudan?as Ambientais na Interface Flo resta-Cidade e Propaga??o de Efeito de Borda no Maci?o da Tijuca, Rio de Janeiro: Um Modelo de Vizinhan?a,” Doctoral Thesis in Geography, Federal University of Rio de Janeiro, 2005.

[36]   A. S. Figueiró and A. L. Coelho Netto, “Do Local ao Regional: Análise Comparativa de Transectos Pluviomé tricos em Diferentes Escalas,” V Encontro Nacional da Associa??o Nacional de Pós Gradua??o em Geografia/ ANPEGE, Florianópolis, 2003.

[37]   A. L. Coelho Netto, A. Avelar and R. D’orsi, “Domínio do Ecossistema da Floresta Atlantica de Encostas,” In: Rio Próximos 100 Anos, O Aquecimento Global e a Cidade, Rio de Janeiro, Instituto Municipal de Urbanismo Pereira Passos, 2008.

[38]   C. Chen and T. Knutson, “On the Verification and Comparison of Extreme Rainfall Indices from Climate Models,” Journal of Climate, Notes and Correspondence, Vol. 21, No. 7, 2008, pp. 1605-1621. doi:10.1175/2007JCLI1494.1

[39]   D. Kiktev et al., “Comparison of Modeled and Observed Trends in Indices of Daily Climate Extremes,” Journal of Climate, Vol. 16, No. 22, 2008, pp. 3560-3571. doi:10.1175/1520-0442(2003)016<3560:COMAOT>2.0.CO;2

[40]   M. Wehner, “Predicted Twenty-First-Century Changes in Seasonal Extreme Precipitation Events in Parallel Climate Model,” Journal of Climate, Vol. 17, No. 21, 2004, pp. 4281-4290. doi:10.1175/JCLI3197.1

[41]   G. C. Hegerl, et al., “Detectability of Anthropogenic Chan ges in Annual Temperature and Precipitation Extremes,” Journal of Climate, Vol. 17, No. 19, 2004, pp. 3683-3700. doi:10.1175/1520-0442(2004)017<3683:DOACIA>2.0.CO;2

[42]   J. Iorio, et al., “Effect of Model Resolution and Sub grid-Scale Physics on the Simulation of Precipitation in the Continental United States,” Climate Dynamics, Vol. 23, No. 3-4, 2004, pp. 243-258. doi:10.1007/s00382-004-0440-y

[43]   V. V. Kharin, et al., “Intercomparison of Near-Surface Temperature and Precipitation Extrems in AMIP-2 Simulations, Reanalyses, and Observations,” Journal of Climate, Vol. 18, No. 24, 2005, pp. 5201-5223. doi:10.1175/JCLI3597.1

[44]   S. Emori, et al., “Validation, Parameterization Dependence, and Future Projection of Daily Precipitation Simulated with a High-Resolution Atmospheric GCM,” Geo physical Research Letters, Vol. 32, No. 6, 2005, pp. 1-4. doi:10.1029/2004GL022306

[45]   J. A. Marengo and M. C. Valverde, “Caracteriza??o do Clima no Século XX e Cenário de Mudan?as de Clima para o Brasil no século XXI usando Modelos do IPCC AR4,” Revista Multiciência, Campinas, Edi??o n. 8, 2007, Mudan?as Climáticas.

[46]   R. Blake, et al., “Urban Climate: Processes, Trends and Projections. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network,” Cambridge University Press, Cambridge, 2011, pp. 43-81. doi:10.1017/CBO9780511783142.009

[47]   I. Zurbenko and M. Luo, “Restoration of Time-Spatial Scale in Global Temperature Data,” American Journal of Climate Change, Vol. 1, No. 3, 2012, pp. 154-163. doi:10.4236/ajcc.2012.13013