On the Design of Optimal Feedback Control for Systems of Second Order

References

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, “The Mathematical Theory of Optimal Processes,” Wiley Interscience, New York, 1962.

[2]
V. G. Boltyanskii, “Mathematical Methods of Optimal Control,” Holt, Rinehart & Winston, 1971.

[3]
A. M. Formalskii, “Controllability and Stability of Systems with Restricted Control Resources,” Nauka, Moscow, 1974 (in Russian).

[4]
I. A. Sultanov, “Studying the Control Processes Obeying Equations with Underdefinite Parameters,” Automation and Remote Control, No. 10, October 1980, pp. 30-41.

[5]
A. G. Butkovskiy, “Phase Portrait of Control Dynamical Systems,” Kluwer, 1991.

[6]
V. V. Alexandrov and V. N. Jermolenko, “On the Absolute Stability of Second-Order Systems,” Bulletin of Moscow University, Series 1, Mathematics and Mechanics, No. 5, October 1972, pp. 102-108.

[7]
E. K. Lavrovskii and A. M. Formalskii, “Optimal Control of the Pumping and Damping of a Swing,” Journal of Applied Mathematics and Mechanics, Vol. 57, No. 2, April 1993, pp. 311-320.

[8] K. Magnus, “Schwingungen Eine einfurung in die theoretische behandlung von schwingungsproblemen,” D. G. Teubner Stuttgart, 1976.