Near-Infrared Spectroscopy Coupled with Kernel Partial Least Squares-Discriminant Analysis for Rapid Screening Water Containing Malathion

Show more

Near-infrared spectroscopy coupled with kernel partial
least squares-discriminant analysis was used to rapidly screen water containing
malathion. In the wavenumber of 4348 cm^{-}^{1} to 9091 cm^{-}^{1},
the overall correct classification rate of kernel partial least
squares-discriminant analysis was 100% for training set, and 100% for test set,
with the lowest concentration detected malathion residues in water being 1 μg·ml^{-}^{1}.
Kernel partial least
squares-discriminant analysis was able to have a good performance in
classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a
potential in rapid screening other pesticide residues in
water.

References

[1] P. D. Moore, A. K. Patlolla and P. B. Tchounwou, “Cytogenetic Evaluation of Malathion-Induced Toxicity in Sprague-Dawley Rats,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 725, No. 1, 2011, pp. 78-82. doi:10.1016/j.mrgentox.2011.07.007

[2] M. Khuhawar, A. Channar, S. Lanjwani and K. Mahar, “Indirect High Performance Liquid Chromatographic Determination of Malathion,” Journal of the Chemical Society of Pakistan, Vol. 18, No. 4, 2011, p. 306.

[3] M. Khuhawar, A. Chanar and I. Qazi, “Indirect Determination of Malathion Using Atomic-Absorption,” Journal of the Chemical Society of Pakistan, Vol. 16, No. 3, 2011, p. 194.

[4] M. Sulak and B. Keskinler, “Detection of Malathion Using a Carbon Nanotube Modified Gold Electrode,” Fresenius Environmental Bulletin, Vol. 20, No. 10, 2011.

[5] C. García-Ruiz, G. Alvarez-Llamas, á. Puerta, E. Blanco, A. Sanz-Medel and M. L. Marina, “Enantiomeric Separation of Organophosphorus Pesticides by Capillary Electrophoresis: Application to the Determination of Malathion in Water Samples after Preconcentration by Off-Line Solid-Phase Extraction,” Analytica Chimica Acta, Vol. 543, No. 1, 2005, pp. 77-83.
doi:10.1016/j.aca.2005.04.027

[6] H. Cheng, J. Li, X. Gao, J. Jia, D. Zhang and D. Zhao, “Malathion Detection Method Using Microhotplate-Based Preconcentrator and Ion Mobility Spectrometer,” International Journal of Environmental Analytical Chemistry, Vol. 92, No. 3, 2012, pp. 279-288.
doi:10.1080/03067311003778623

[7] W. Guo, B. J. Engelman, T. L. Haywood, N. B. Blok, D. S. Beaudoin and S. O. Obare, “Dual Fluorescence and Electrochemical Detection of the Organophosphorus Pesticides-Ethion, Malathion and Fenthion,” Talanta, Vol. 15, No. 87, 2011, pp. 276-283.

[8] D. S. Maravi?, M. S. Trtica, ?. S. Miljani? and B. B. Radak, “Detection of Malathion by the CO2 Laser: Potentials and Limitations,” Analytica Chimica Acta, Vol. 555, No. 2, 2006, pp. 259-262. doi:10.1016/j.aca.2005.09.006

[9] Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond and N. Jent, “A Review of Near Infrared Spectroscopy and Chemometrics in Pharmaceutical Technologies,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 44, No. 3, 2007, pp. 683-700.
doi:10.1016/j.jpba.2007.03.023

[10] K. Wang, G. Chi, R. Lau and T. Chen, “Multivariate Training of Near Infrared Spectroscopy in the Presence of Light Scattering Effect: A Comparative Study,” Analytical letters, Vol. 44, No. 5, 2011, pp. 824-836.
doi:10.1080/00032711003789967

[11] H. Huang, H. Yu, H. Xu and Y. Ying, “Near Infrared Spectroscopy for On/In-Line Monitoring of Quality in Foods and Beverages: A Review,” Journal of Food Engineering, Vol. 87, No. 3, 2008, pp. 303-313.
doi:10.1016/j.jfoodeng.2007.12.022

[12] T. Woodcock, C. O’Donnell and G. Downey, “Review: Better Quality Food and Beverages: The Role of Near Infrared Spectroscopy,” Journal of Near Infrared Spectroscopy, Vol. 16, No. 1, 2008, pp. 1-29.
doi:10.1255/jnirs.758

[13] J. H. Kalivas, “Multivariate Training: An Overview,” Analytical Letters, Vol. 38, No. 14, 2005, pp. 2259-2279.
doi:10.1080/00032710500315904

[14] W. F. C. Rocha, B. G. Vaz, G. F. Sarmanho, L. H. C. Leal, R. Nogueira, V. F. Silva and C. N. Borges, “Chemometric Techniques Applied for Classification and Quantification of Binary Biodiesel/Diesel Blends,” Analytical Letters, Vol. 45, No. 16, 2012, pp. 2398-2411.
doi:10.1080/00032719.2012.686135

[15] S. Wold, M. Sj?str?m and L. Eriksson, “PLS-Regression: A Basic Tool of Chemometrics,” Chemometrics and Intelligent Laboratory Systems, Vol. 58, No. 2, 2001, pp. 109-130. doi:10.1016/S0169-7439(01)00155-1

[16] K. Buijs and M. Maurice, “Some Considerations on Apparent Deviations from Lambert-Beer’s Law,” Analytica Chimica Acta, Vol. 47, No. 3, 1969, pp. 469-474.
doi:10.1016/S0003-2670(01)95647-8

[17] R. Rosipal, “Kernel Partial Least Squares for Nonlinear Regression and Discrimination,” Neural Network World, Vol. 13, No. 3, 2003, pp. 291-300.

[18] R. Rosipal and L. J. Trejo, “Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space,” The Journal of Machine Learning Research, Vol. 2, 2002, pp. 97-123.

[19] K. Kim, J. M. Lee and I. B. Lee, “A Novel Multivariate Regression Approach Based on Kernel Partial Least Squares with Orthogonal Signal Correction,” Chemometrics and Intelligent Laboratory Systems, Vol. 79, No. 1, 2005, pp. 22-30. doi:10.1016/j.chemolab.2005.03.003

[20] B. M. Nicolai, K. I. Theron and J. Lammertyn, “Kernel PLS Regression on Wavelet Transformed NIR Spectra for Prediction of Sugar Content of Apple,” Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, 2007, pp. 243-252. doi:10.1016/j.chemolab.2006.07.001

[21] J. I. Park, L. Liu, X. P. Ye, M. K. Jeong and Y. S. Jeong, “Improved Prediction of Biomass Composition for Switchgrass Using Reproducing Kernel Methods with Wavelet Compressed FT-NIR Spectra,” Expert Systems with Applications, Vol. 39, No. 1, 2012, pp. 1555-1564.
doi:10.1016/j.eswa.2011.05.012

[22] Q. B. Li, L. N. Li and G. J. Zhang, “A Nonlinear Model for Training of Blood Glucose Noninvasive Measurement Using Near Infrared Spectroscopy,” Infrared Physics & Technology, Vol. 53, No. 5, 2010, pp. 410-417.
doi:10.1016/j.infrared.2010.07.012

[23] B. Walczak and D. Massart, “The Radial Basis Functions —Partial Least Squares Approach as a Flexible Non-Linear Regression Technique,” Analytica Chimica Acta, Vol. 331, No. 3, 1996, pp. 177-185.
doi:10.1016/0003-2670(96)00202-4

[24] B. Walczak and D. Massart, “Application of Radial Basis Functions—Partial Least Squares to Non-Linear Pattern Recognition Problems: Diagnosis of Process Faults,” Analytica Chimica Acta, Vol. 331, No. 3, 1996, pp. 187-193.
doi:10.1016/0003-2670(96)00206-1